Abstract
Biochar is a low-cost adsorbent used in the treatment of contaminated wastewater. We investigated the potential of an Fe-impregnated, Ba2+-loaded biochar (Fe-(Ba-BC)) for the removal of SO42− from aqueous solutions. The Ba2+-loaded biochar was synthesized from sawdust impregnated with iron oxide via pyrolysis at 600 °C. The porous structure of the Fe-(Ba-BC) was identified by scanning electron microscopy before sulfate was adsorbed onto the adsorbent. Functional groups were determined by energy-dispersive spectrophotometry and Raman spectrometry. The Fe-(Ba-BC) Raman peaks before the experiment were higher than after, suggesting the precipitation of BaSO4. The presence of BaCl2 on the surface of the biochar was confirmed by X-ray diffraction. Batch sorption results showed that Fe-(Ba-BC) strongly adsorbed aqueous SO42− with a removal efficacy of 96.7% under the optimum conditions of 0.25 M BaCl2, a contact time of 480 min, a pH of 9 and an adsorbent dose of 2 g. The optimum condition for removal and reaction rate kinetics analysis indicated that adsorption curve fitted well with PSO, k2 0.00015 confirmed the removal of SO42− via chemisorption. Thus, Fe-(Ba-BC) was found to be a favorable adsorbent for removing SO42−.
| Original language | British English |
|---|---|
| Article number | 135233 |
| Journal | Chemosphere |
| Volume | 303 |
| DOIs | |
| State | Published - Sep 2022 |
Keywords
- Activated biochar
- Adsorption kinetics
- Chemisorption
- Sulfate removal
- Wastewater treatment