Abstract
This paper presents the effects of adhesive properties on structural performance of reinforced concrete (RC) beams strengthened with carbon fiber reinforced plastic (CFRP) strips. The epoxy adhesives modified with liquid rubber of different content were used to bond the CFRP strips, and four point bending experiments were carried out on RC beams. The experimental results show that different CFRP strip thickness of 0.22 and 0.44 mm resulted in a transition of failure mechanism from interfacial debonding along the CFRP-concrete interface to concrete cover separation starting from the end of CFRP strips in the concrete. Moreover, it is suggested that no matter interfacial debonding or concrete cover separation, the rubber modifier enhanced the structural performance by increasing the maximum load-carrying capacity and the corresponding ductility, compared with the beams bonded with a neat epoxy resin. The improvement of structural performance due to modified adhesive was associated with the modification of stress profiles along the CFRP-concrete interface especially the stress concentration at the end of FRP, and the enhanced interlaminar fracture toughness. Rubber modified epoxy therefore is worth further studying in practical repair applications.
Original language | British English |
---|---|
Pages (from-to) | 2557-2564 |
Number of pages | 8 |
Journal | Composites Science and Technology |
Volume | 64 |
Issue number | 16 |
DOIs | |
State | Published - Dec 2004 |
Keywords
- A. Adhesive joints
- A. Fibres
- C. Failure criterion
- C. Stress concentrations