Experimental characterization of particle-laden air flow across horizontal pipe junctions

Tariq S. Khan, Mohamed AlShehhi, Xu Rumin, Saqib Salam

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

There are several industrial applications in which two phase solid-gas flows are involved. At times, pipe junctions are involved where flow split takes place. Present study consists of experimental investigation of turbulent gas-solid two-phase flow through horizontal pipe junctions. The effects of air flow rate, branch diameter and pipe orientation at junctions are investigated on mass fraction, phase split and solid particles distribution across the junctions. Silica powder, in the monodispersed size of 15 μm was injected into the pipelines by a micro-feeder. The powder was entrained in an air flow which passed horizontally through a long straight channel of circular pipe with T and Y junctions. The main pipe was 51mm in diameter while the inlet superficial velocity of gas was varied from 5 m/s to 13.5m/s. The particles mass concentration was measured by the aerodynamic particle sizer (APS). Experimental results showed that solid phase split followed air flow split while decreasing the inlet air velocity caused major decrease in the mass fraction at junction pipe. The orientation of junction pipe has a significant effect on the flow behavior along the pipe. These results indicate that the behavior of solid particles is a complex phenomenon in pipe flows.

Original languageBritish English
Title of host publicationFluids Engineering
ISBN (Electronic)9780791852101
DOIs
StatePublished - 2018
EventASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018 - Pittsburgh, United States
Duration: 9 Nov 201815 Nov 2018

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume7

Conference

ConferenceASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Country/TerritoryUnited States
CityPittsburgh
Period9/11/1815/11/18

Fingerprint

Dive into the research topics of 'Experimental characterization of particle-laden air flow across horizontal pipe junctions'. Together they form a unique fingerprint.

Cite this