TY - GEN
T1 - Experimental assessment of flat-type photovoltaic module thermal behavior
AU - Bojanampati, Shrinivas
AU - Rodgers, Peter
AU - Eveloy, Valerie
PY - 2012
Y1 - 2012
N2 - The electrical performance and reliability of flat-type photovoltaic (PV) modules can be severely affected by elevated cell operating temperature in regions benefiting from high yearly solar irradiation levels, due to elevated ambient temperatures. In this work the potential of active cooling solutions to enhance flat-type PV module electrical performance, consisting of forced air- and water-cooling, is experimentally explored on laboratory-scale prototypes operated indoors under different light source illuminance levels. Forced-air and water-cooling are implemented using a duct-axial fan configuration and chilled water channel, respectively, both attached to the module non-active surface. In both cooling configurations, the cooling fluid directly wets the module non-active surface, thereby eliminating thermal contact resistance. Forced air-cooling is found to improve module peak output power by approximately 10% relative to passive cooling, in an ambient temperature of 21°C. The output power of water-cooled modules increases by 48% using unchilled water at a temperature 21°C, and by 66% and 69% using chilled water at 14°C and 5°C, respectively, relative to passive cooling. The experiments conducted therefore provide an order-of-magnitude assessment of the technical feasibility of different active cooling strategies before characterizing commercial modules under solar irradiation conditions.
AB - The electrical performance and reliability of flat-type photovoltaic (PV) modules can be severely affected by elevated cell operating temperature in regions benefiting from high yearly solar irradiation levels, due to elevated ambient temperatures. In this work the potential of active cooling solutions to enhance flat-type PV module electrical performance, consisting of forced air- and water-cooling, is experimentally explored on laboratory-scale prototypes operated indoors under different light source illuminance levels. Forced-air and water-cooling are implemented using a duct-axial fan configuration and chilled water channel, respectively, both attached to the module non-active surface. In both cooling configurations, the cooling fluid directly wets the module non-active surface, thereby eliminating thermal contact resistance. Forced air-cooling is found to improve module peak output power by approximately 10% relative to passive cooling, in an ambient temperature of 21°C. The output power of water-cooled modules increases by 48% using unchilled water at a temperature 21°C, and by 66% and 69% using chilled water at 14°C and 5°C, respectively, relative to passive cooling. The experiments conducted therefore provide an order-of-magnitude assessment of the technical feasibility of different active cooling strategies before characterizing commercial modules under solar irradiation conditions.
UR - http://www.scopus.com/inward/record.url?scp=84861403662&partnerID=8YFLogxK
U2 - 10.1109/ESimE.2012.6191695
DO - 10.1109/ESimE.2012.6191695
M3 - Conference contribution
AN - SCOPUS:84861403662
SN - 9781467315128
T3 - 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2012
BT - 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2012
T2 - 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2012
Y2 - 16 April 2012 through 18 April 2012
ER -