TY - JOUR
T1 - Evidence for the druggability of aldosterone targets in heart failure
T2 - A bioinformatics and data science-driven decision-making approach
AU - Salgado Rezende de Mendonça, Lucas
AU - Senar, Sergio
AU - Moreira, Luana Lorena
AU - Silva Júnior, José Antônio
AU - Nader, Moni
AU - Campos, Luciana Aparecida
AU - Baltatu, Ovidiu Constantin
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/3
Y1 - 2024/3
N2 - Background: Aldosterone plays a key role in the neurohormonal drive of heart failure. Systematic prioritization of drug targets using bioinformatics and database-driven decision-making can provide a competitive advantage in therapeutic R&D. This study investigated the evidence on the druggability of these aldosterone targets in heart failure. Methods: The target disease predictability of mineralocorticoid receptors (MR) and aldosterone synthase (AS) in cardiac failure was evaluated using Open Targets target-disease association scores. The Open Targets database collections were downloaded to MongoDB and queried according to the desired aggregation level, and the results were retrieved from the Europe PMC (data type: text mining), ChEMBL (data type: drugs), Open Targets Genetics Portal (data type: genetic associations), and IMPC (data type: genetic associations) databases. The target tractability of MR and AS in the cardiovascular system was investigated by computing activity scores in a curated ChEMBL database using supervised machine learning. Results: The medians of the association scores of the MR and AS groups were similar, indicating a comparable predictability of the target disease. The median of the MR activity scores group was significantly lower than that of AS, indicating that AS has higher target tractability than MR [Hodges-Lehmann difference 0.62 (95%CI 0.53–0.70, p < 0.0001]. The cumulative distributions of the overall multiplatform association scores of cardiac diseases with MR were considerably higher than with AS, indicating more advanced investigations on a wider range of disorders evaluated for MR (Kolmogorov-Smirnov D = 0.36, p = 0.0009). In curated ChEMBL, MR had a higher cumulative distribution of activity scores in experimental cardiovascular assays than AS (Kolmogorov-Smirnov D = 0.23, p < 0.0001). Documented clinical trials for MR in heart failures surfaced in database searches, none for AS. Conclusions: Although its clinical development has lagged behind that of MR, our findings indicate that AS is a promising therapeutic target for the treatment of cardiac failure. The multiplatform-integrated identification used in this study allowed us to comprehensively explore the available scientific evidence on MR and AS for heart failure therapy.
AB - Background: Aldosterone plays a key role in the neurohormonal drive of heart failure. Systematic prioritization of drug targets using bioinformatics and database-driven decision-making can provide a competitive advantage in therapeutic R&D. This study investigated the evidence on the druggability of these aldosterone targets in heart failure. Methods: The target disease predictability of mineralocorticoid receptors (MR) and aldosterone synthase (AS) in cardiac failure was evaluated using Open Targets target-disease association scores. The Open Targets database collections were downloaded to MongoDB and queried according to the desired aggregation level, and the results were retrieved from the Europe PMC (data type: text mining), ChEMBL (data type: drugs), Open Targets Genetics Portal (data type: genetic associations), and IMPC (data type: genetic associations) databases. The target tractability of MR and AS in the cardiovascular system was investigated by computing activity scores in a curated ChEMBL database using supervised machine learning. Results: The medians of the association scores of the MR and AS groups were similar, indicating a comparable predictability of the target disease. The median of the MR activity scores group was significantly lower than that of AS, indicating that AS has higher target tractability than MR [Hodges-Lehmann difference 0.62 (95%CI 0.53–0.70, p < 0.0001]. The cumulative distributions of the overall multiplatform association scores of cardiac diseases with MR were considerably higher than with AS, indicating more advanced investigations on a wider range of disorders evaluated for MR (Kolmogorov-Smirnov D = 0.36, p = 0.0009). In curated ChEMBL, MR had a higher cumulative distribution of activity scores in experimental cardiovascular assays than AS (Kolmogorov-Smirnov D = 0.23, p < 0.0001). Documented clinical trials for MR in heart failures surfaced in database searches, none for AS. Conclusions: Although its clinical development has lagged behind that of MR, our findings indicate that AS is a promising therapeutic target for the treatment of cardiac failure. The multiplatform-integrated identification used in this study allowed us to comprehensively explore the available scientific evidence on MR and AS for heart failure therapy.
KW - Aldosterone
KW - CYP11B2
KW - Databases
KW - Heart failure
KW - Machine learning
KW - NR3C2
KW - Open access platforms
UR - http://www.scopus.com/inward/record.url?scp=85186263536&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2024.108124
DO - 10.1016/j.compbiomed.2024.108124
M3 - Article
C2 - 38412691
AN - SCOPUS:85186263536
SN - 0010-4825
VL - 171
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 108124
ER -