TY - JOUR
T1 - Evaluation of the Oil Recovery Potential and Cost Implication Analysis of Alternative ASP Formulations for Sandstone and Carbonate Reservoirs
AU - Tackie-Otoo, Bennet Nii
AU - Otchere, Daniel Asante
AU - Latiff, Abdul Halim Abdul
AU - Ayoub Mohammed, Mohammed Abdalla
AU - Hassan, Anas Mohammed
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/5/14
Y1 - 2024/5/14
N2 - This study explores alternative chemical agents to enhance oil recovery in sandstone and carbonate reservoirs, aiming to address limitations in alkali-surfactant-polymer (ASP) flooding. Existing ASP methods face technical and environmental challenges, prompting research into alternative chemical agents. However, there are limited field deployments of these alternative chemical agents due to high costs, and ternary combinations of these agents remain unexplored. The study investigates a combination of organic alkali, amino acid-based surfactant/surface-active ionic liquid, and biopolymer. Comparative analysis with conventional ASP formulations reveals promising results. Organic alkali and biopolymer combination mitigates the adverse effects of inorganic alkalis on partially hydrolyzed polyacrylamide, enhancing the oil recovery potential. A unit technical cost (UTC) calculation showed that despite higher chemical costs per incremental barrel of oil, the alternative ASP formulations demonstrate comparable costs due to reduced facility cost. Cost-effectiveness will improve with incorporation of factors such as environmental friendliness and reduced preflush requirements. Mass production of these agents could further enhance the economic feasibility. Therefore, this study reveals that careful cost-benefit analysis, the development of low-concentration formulations, and mass production of these chemical agents could facilitate the implementation of these alternatives, ensuring compliance with environmental regulations and enabling ASP flooding in challenging reservoir conditions.
AB - This study explores alternative chemical agents to enhance oil recovery in sandstone and carbonate reservoirs, aiming to address limitations in alkali-surfactant-polymer (ASP) flooding. Existing ASP methods face technical and environmental challenges, prompting research into alternative chemical agents. However, there are limited field deployments of these alternative chemical agents due to high costs, and ternary combinations of these agents remain unexplored. The study investigates a combination of organic alkali, amino acid-based surfactant/surface-active ionic liquid, and biopolymer. Comparative analysis with conventional ASP formulations reveals promising results. Organic alkali and biopolymer combination mitigates the adverse effects of inorganic alkalis on partially hydrolyzed polyacrylamide, enhancing the oil recovery potential. A unit technical cost (UTC) calculation showed that despite higher chemical costs per incremental barrel of oil, the alternative ASP formulations demonstrate comparable costs due to reduced facility cost. Cost-effectiveness will improve with incorporation of factors such as environmental friendliness and reduced preflush requirements. Mass production of these agents could further enhance the economic feasibility. Therefore, this study reveals that careful cost-benefit analysis, the development of low-concentration formulations, and mass production of these chemical agents could facilitate the implementation of these alternatives, ensuring compliance with environmental regulations and enabling ASP flooding in challenging reservoir conditions.
UR - http://www.scopus.com/inward/record.url?scp=85192187838&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c09590
DO - 10.1021/acsomega.3c09590
M3 - Article
AN - SCOPUS:85192187838
SN - 2470-1343
VL - 9
SP - 20859
EP - 20875
JO - ACS Omega
JF - ACS Omega
IS - 19
ER -