Ergodic Capacity Analysis of Wireless Transmission over Generalized Multipath/Shadowing Channels

Paschalis C. Sofotasios, Seong Ki Yoo, Sami Muhaidat, Simon L. Cotton, Michail Matthaiou, Mikko Valkama, George K. Karagiannidis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Novel composite fading models were recently proposed based on inverse gamma distributed shadowing conditions. These models were extensively shown to provide remarkable modeling of the simultaneous occurrence of multipath fading and shadowing phenomena in emerging wireless scenarios such as cellular, off-body and vehicle-to-vehicle communications. Furthermore, the algebraic representation of these models is rather tractable, which renders them convenient to handle both analytically and numerically. Based on this, the present contribution analyzes the ergodic capacity over the recently proposed κ-μ inverse gamma composite fading channels, which were shown to characterize excellently multipath fading and shadowing in line-of-sight communication scenarios, including realistic vehicular communications. Novel analytic expressions are derived which are subsequently used in the analysis of the corresponding system performance. In this context, the offered results are compared with respective results from cases assuming conventional fading conditions, which leads to the development of numerous insights on the effect of the multipath fading and shadowing severity on the achieved capacity levels. It is expected that these results will be useful in the design of timely and demanding wireless technologies such as wearable, cellular and inter-vehicular communications.

Original languageBritish English
Title of host publication2018 IEEE 87th Vehicular Technology Conference, VTC Spring 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-5
Number of pages5
ISBN (Electronic)9781538663554
DOIs
StatePublished - 20 Jul 2018
Event87th IEEE Vehicular Technology Conference, VTC Spring 2018 - Porto, Portugal
Duration: 3 Jun 20186 Jun 2018

Publication series

NameIEEE Vehicular Technology Conference
Volume2018-June
ISSN (Print)1550-2252

Conference

Conference87th IEEE Vehicular Technology Conference, VTC Spring 2018
Country/TerritoryPortugal
CityPorto
Period3/06/186/06/18

Fingerprint

Dive into the research topics of 'Ergodic Capacity Analysis of Wireless Transmission over Generalized Multipath/Shadowing Channels'. Together they form a unique fingerprint.

Cite this