Enhanced rotating nonlinear energy sink

Mohammad A. Al-Shudeifat, Adnan S. Saeed

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

An enhanced rotating nonlinear energy sink (NES) is numerically investigated in this study. The rotating NES in the literature is coupled with the associated linear structure by its nonlinear inertial coupling through a rigid arm that couples the rotating NES mass with the structure. Here, the coupling arm is assumed to be elastic. Consequently, the NES mass rotates about a fixed vertical axis and allowed to oscillate along the coupling arm in a radial direction. According to this modification, the rotating NES dissipates the transferred energy from the associated structure through its angular and radial viscous damping. Therefore, the modified rotating NES by elastic arm is found to absorb and dissipate more energy than the old one for a wide range of initial input energies induced into the associated linear structure. The arm length and the angular damping coefficient of the old rotating NES are optimized first by assuming a rigid coupling arm and later the stiffness and the damping coefficients in the radial direction are optimized accordingly. The obtained numerical results have shown a significant improvement in the rotating NES performance when the NES is allowed to oscillate through the coupling arm by a linear coupling restoring spring rather than locking the NES to a rigid arm.

Original languageBritish English
Title of host publication12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
ISBN (Electronic)9780791850183
DOIs
StatePublished - 2016
EventASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016 - Charlotte, United States
Duration: 21 Aug 201624 Aug 2016

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Conference

ConferenceASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
Country/TerritoryUnited States
CityCharlotte
Period21/08/1624/08/16

Fingerprint

Dive into the research topics of 'Enhanced rotating nonlinear energy sink'. Together they form a unique fingerprint.

Cite this