TY - GEN
T1 - Emotional Climate Recognition in Conversations using Peers' Speech-based Bispectral Features and Affect Dynamics
AU - Alhussein, Ghada
AU - Alkhodari, Mohanad
AU - Lamprou, Charalampos
AU - Ziogas, Ioannis
AU - Ganiti-Roumeliotou, Efstratia
AU - Khandoker, Ahsan
AU - Hadjileontiadis, Leontios J.
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Emotion recognition in conversations using artificial intelligence (AI) has recently gained a lot of attention, as it can provide additional emotion cues that can be correlated with human social behavior. An extension towards an AI-based emotional climate (EC) recognition, i.e., the recognition of the joint emotional atmosphere dynamically created and perceived by the peers throughout a conversation, is proposed here. In our approach, namely MLBispeC (Machine Learning Based Bispectral Classification), the peers' speech signals during their conversation are subjected to time-windowed bispectral analysis, allowing for feature extraction related to dynamic harmonics nonlinear interactions. In addition, peers' affect dynamics, derived from their same time-windowed emotion labeling, are combined to form an extended feature vector, inputted into two well-known machine learning classifiers (Support Vector Machine, K-Nearest Neighbor). MLBispeC was evaluated on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) open access dataset, which contains 2D emotions, i.e., Arousal (A) and valence (V) that are divided into (low/high) classes. The experimental results have shown that MLBispeC outperforms previous state-of-the-art techniques, achieving an accuracy of 0.826A/0.754V, sensitivity of 0.864A/0.774V, and area under the curve (AUC) of 0.821A/0.799V. This demonstrates the effectiveness of MLBispeC to objectively recognize peers' EC during their conversation, allowing for insights into their emotional and social interactions.Clinical
AB - Emotion recognition in conversations using artificial intelligence (AI) has recently gained a lot of attention, as it can provide additional emotion cues that can be correlated with human social behavior. An extension towards an AI-based emotional climate (EC) recognition, i.e., the recognition of the joint emotional atmosphere dynamically created and perceived by the peers throughout a conversation, is proposed here. In our approach, namely MLBispeC (Machine Learning Based Bispectral Classification), the peers' speech signals during their conversation are subjected to time-windowed bispectral analysis, allowing for feature extraction related to dynamic harmonics nonlinear interactions. In addition, peers' affect dynamics, derived from their same time-windowed emotion labeling, are combined to form an extended feature vector, inputted into two well-known machine learning classifiers (Support Vector Machine, K-Nearest Neighbor). MLBispeC was evaluated on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) open access dataset, which contains 2D emotions, i.e., Arousal (A) and valence (V) that are divided into (low/high) classes. The experimental results have shown that MLBispeC outperforms previous state-of-the-art techniques, achieving an accuracy of 0.826A/0.754V, sensitivity of 0.864A/0.774V, and area under the curve (AUC) of 0.821A/0.799V. This demonstrates the effectiveness of MLBispeC to objectively recognize peers' EC during their conversation, allowing for insights into their emotional and social interactions.Clinical
UR - http://www.scopus.com/inward/record.url?scp=85179647691&partnerID=8YFLogxK
U2 - 10.1109/EMBC40787.2023.10340028
DO - 10.1109/EMBC40787.2023.10340028
M3 - Conference contribution
C2 - 38083331
AN - SCOPUS:85179647691
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Y2 - 24 July 2023 through 27 July 2023
ER -