Electrostatically-coupled graphene oxide nanocomposite cation exchange membrane

Adetunji Alabi, Levente Cseri, Ahmed Al Hajaj, Gyorgy Szekely, Peter Budd, Linda Zou

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


We report the preparation of an electrostatically-coupled graphene oxide nanocomposite cation exchange membrane (CEM) based on sulfonic group containing graphene oxide (SGO) (45 wt % loading) and polyvinylidene fluoride (PVDF), where the ion exchange groups were provided by the SGO additive. SGO was prepared via the mixing of graphene oxide (GO) with a mixture derived from 3,4-dihydroxy-L-phenylalanine (L-DOPA) and poly(sodium 4-styrenesulfonate) (PSS). A mold-casting technique was developed to fabricate the free-standing nanocomposite CEM. The presence of sulfonic groups in the nanocomposite was confirmed with FTIR spectroscopy. Energy dispersive spectroscopy analysis showed the SGO was distributed across the entire membrane matrix, with minimal aggregation. The resultant SGO/PVDF nanocomposite CEM membrane demonstrated high hydrophilicity and high water uptake, but low swelling ratio. Furthermore, evaluation of the electrochemical properties of the nanocomposite CEM showed favorable ion exchange capacity (0.63 ± 0.08 meq/g), permselectivity (0.95 ± 0.04), and area resistance (2.8 ± 0.2 Ω cm2). The nanocomposite CEM show good potential for use in electromembrane desalination applications.

Original languageBritish English
Article number117457
JournalJournal of Membrane Science
StatePublished - 15 Jan 2020


  • Cation exchange membrane
  • Electromembrane desalination
  • Graphene oxide
  • L-DOPA
  • Nanocomposite
  • poly(sodium 4-styrenesulfonate)


Dive into the research topics of 'Electrostatically-coupled graphene oxide nanocomposite cation exchange membrane'. Together they form a unique fingerprint.

Cite this