Effect of Organic Acids on CO2 Trapping in Carbonate Geological Formations: Pore-Scale Observations Using NMR

Auby Baban, Mujahid Ali, Muhammad Arif, Alireza Keshavarz, Robert Amin, Stefan Iglauer

    Research output: Contribution to journalArticlepeer-review

    5 Scopus citations


    Stearic acid is an example of a carboxylic compound naturally present in geological formations (deep saline aquifers and depleted hydrocarbon reservoirs), which renders the rock hydrophobic (CO2-wet) over a geological time scale. Such hydrophobic surfaces are detrimental to residual CO2 trapping. There is, however, a lack of comprehensive dataset about how traces of these organic molecules affect the rock′s CO2 wettability and residual CO2 trapping. We, thus, used in situ NMR T1-T2 2D images to visualize fluid configurations in the pore network and used T1/T2 ratios to assess the microscopic wettability of the rock to pore space fluids subsequent to each process step. The T2 relaxation time was measured to demonstrate displacement processes and evaluate the trapping behavior at the pore scale, which is closely correlated to reservoir-scale flow functions. The trapping in the CO2-wet sample (14%) was significantly lower than that of the analogous water-wet sample (18%). This reduction in CO2 trapping is due to surface macroscopic flow layers acting as conduits allowing slow desaturation of CO2. Importantly, in the CO2-wet sample, trapping predominately occurred in meso- and micropores, whereas trapping in the analogous water-wet rock primarily occurred in macropores. This work thus provides a comprehensive dataset on the impact of organic acids on residual trapping at the pore scale, which ultimately helps to advance industrial-scale implementation of CGS and EOR project schemes in carbonate reservoirs.

    Original languageBritish English
    Pages (from-to)2983-2992
    Number of pages10
    JournalEnergy and Fuels
    Issue number4
    StatePublished - 16 Feb 2023


    Dive into the research topics of 'Effect of Organic Acids on CO2 Trapping in Carbonate Geological Formations: Pore-Scale Observations Using NMR'. Together they form a unique fingerprint.

    Cite this