Abstract
This study highlights the potential of pyrolysis of food waste (FW) with Ni-based catalysts under CO2 atmosphere as an environmentally benign disposal technique. FW was pyrolyzed with homo-type Ni/Al2O3 (Ni–HO) or eggshell-type Ni/Al2O3 (Ni-EG) catalysts under flowing CO2 (50 mL/min) at temperatures from 500 to 700 °C for 1 h. A higher gas yield (42.05 wt%) and a lower condensable yield (36.28 wt%) were achieved for catalytic pyrolysis with Ni-EG than with Ni–HO (34.94 wt% and 40.06 wt%, respectively). In particular, the maximum volumetric content of H2 (21.48%) and CO (28.43%) and the lowest content of C2–C4 (19.22%) were obtained using the Ni-EG. The formation of cyclic species (e.g., benzene derivatives) in bio-oil was also effectively suppressed (24.87%) when the Ni-EG catalyst and CO2 medium were concurrently utilized for the FW pyrolysis. Accordingly, the simultaneous use of the Ni-EG catalyst and CO2 contributed to altering the carbon distribution of the pyrolytic products from condensable species to value-added gaseous products by facilitating ring-opening reactions and free radical mechanisms. This study should suggest that CO2-assisted catalytic pyrolysis over the Ni-EG catalyst would be an eco-friendly and sustainable strategy for disposal of FW which also provides a clean and high-quality source of energy.
Original language | British English |
---|---|
Article number | 112959 |
Journal | Journal of Environmental Management |
Volume | 294 |
DOIs | |
State | Published - 15 Sep 2021 |
Keywords
- CO
- Eggshell-type catalyst
- Food waste
- Nickel
- Pyrolysis