TY - GEN
T1 - Effect of Comorbidities Features in Machine Learning Models for Survival Analysis to Predict Prodromal Alzheimer's Disease
AU - Abuhantash, Ferial
AU - Shehhi, Aamna Al
AU - Hadjileontiadis, Leontios
AU - Seghier, Mohamed Lamine
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Alzheimer's Disease (AD) is the most common form of dementia, specifically a progressive degenerative disorder affecting 47 million people worldwide and is only expected to grow in the elderly population. The detection of AD in its early stages is crucial to allow early intervention aiding in the prevention or slowing down of the disease. The effect of using comorbidity features in machine learning models to predict the time until a patient develops a prodrome was observed. In this study, we used Alzheimer's Disease Neuroimaging Initiative (ADNI) high-dimensional clinical data to compare the performance of six machine learning algorithms for survival analysis, combined with six feature selection methods trained on two settings: with and without comorbidities features. Our ridge model combined with permutation feature selection achieves maximum performance of 0.90 when using comorbidity features with the concordance index as a performance indicator. This demonstrated that incorporating comorbidities into the feature set enhances the performance of survival analysis for Alzheimer's disease. There is potential to identify risk factors (coronary artery disease) from comorbidities which could guide preventative care based on medical history.
AB - Alzheimer's Disease (AD) is the most common form of dementia, specifically a progressive degenerative disorder affecting 47 million people worldwide and is only expected to grow in the elderly population. The detection of AD in its early stages is crucial to allow early intervention aiding in the prevention or slowing down of the disease. The effect of using comorbidity features in machine learning models to predict the time until a patient develops a prodrome was observed. In this study, we used Alzheimer's Disease Neuroimaging Initiative (ADNI) high-dimensional clinical data to compare the performance of six machine learning algorithms for survival analysis, combined with six feature selection methods trained on two settings: with and without comorbidities features. Our ridge model combined with permutation feature selection achieves maximum performance of 0.90 when using comorbidity features with the concordance index as a performance indicator. This demonstrated that incorporating comorbidities into the feature set enhances the performance of survival analysis for Alzheimer's disease. There is potential to identify risk factors (coronary artery disease) from comorbidities which could guide preventative care based on medical history.
UR - http://www.scopus.com/inward/record.url?scp=85179645469&partnerID=8YFLogxK
U2 - 10.1109/EMBC40787.2023.10341171
DO - 10.1109/EMBC40787.2023.10341171
M3 - Conference contribution
C2 - 38083415
AN - SCOPUS:85179645469
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Y2 - 24 July 2023 through 27 July 2023
ER -