Edge magnetism and electronic structure properties of zigzag nanoribbons of arsenene and antimonene

M. Abid, Anwer Shoaib, M. Hassan Farooq, Hongbo Wu, Dashuai Ma, Botao Fu

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

We have investigated the electronic and magnetic properties of zigzag nanoribbons (ZNRs) of arsenene and antimonene both in black phosphorene (BP) phase and hexagonal phase by using first principles calculations. Firstly, a novel metallic edge state emerges in the mid of the bulk band gap for ZNRs of all the systems. Secondly, edge magnetism have also been systematically studied for these systems by considering different magnetic configurations. An intra-edge antiferromagnetic semiconducting state is found to be the ground state for the ZNRs of arsenene and antimonene. Since the edges of ZNRs are easily saturated by Hydrogen and Oxygen atoms when the samples are exposed to the air in the experiment, we further investigate influence of edge passivation of Hydrogen or Oxygen atoms and find the edge magnetism vanished under H-passivation but still restored under O-atoms passivation. Thus the electronic and magnetic properties of the ZNRs can be effectively controlled by intentionally passivation with various elements. We hope these interesting electronic and magnetic properties of the ZNRs of arsenene/antimonene are useful for future applications in nanoelectronic and spintronic devices.

Original languageBritish English
Pages (from-to)167-172
Number of pages6
JournalJournal of Physics and Chemistry of Solids
Volume110
DOIs
StatePublished - Nov 2017

Keywords

  • AFM semiconducting ground state
  • Edge magnetism
  • First principles calculations
  • Metallic edge states
  • Passivation

Fingerprint

Dive into the research topics of 'Edge magnetism and electronic structure properties of zigzag nanoribbons of arsenene and antimonene'. Together they form a unique fingerprint.

Cite this