Abstract
The present study explores analytically the concept of rocking isolation in bridges considering for the first time the influence of the abutment-backfill system. The dynamic response of rocking bridges with free-standing piers of same height and same section is examined assuming negligible deformation for the substructure and the superstructure. New relationships for the prediction of the bridge rocking motion are derived, including the equation of motion and the restitution coefficient at each impact at the rocking interfaces. The bridge structure is found to be susceptible to a failure mode related to the failure of the abutment-backfill system, which can occur prior to the well-known overturning of the rocking piers. Thus, a new failure spectrum is proposed called Failure Minimum Acceleration Spectrum (FMAS) which extends the overturning spectrum put forward in previous studies, and it differs in principle from the latter. The comparison with the dynamic response of bridges modelled as rocking frames without abutments reveals not only that seat-type abutments and their backfill have a generally beneficial effect on the seismic performance of rocking pier bridges by suppressing the free rocking motion of the frame system, but also that the simple frame model cannot capture all salient features of the rocking bridge response as it misses potential failure modes, overestimating the rocking bridge's safety when these modes are critical.
Original language | British English |
---|---|
Pages (from-to) | 1161-1179 |
Number of pages | 19 |
Journal | Earthquake Engineering and Structural Dynamics |
Volume | 49 |
Issue number | 12 |
DOIs | |
State | Published - 10 Oct 2020 |
Keywords
- abutment
- analytical dynamics
- backfill
- rocking bridges
- seismic isolation
- self-centring