TY - GEN
T1 - Dynamic Encoding and Decoding of Information for Split Learning in Mobile-Edge Computing
T2 - 2023 IEEE Global Communications Conference, GLOBECOM 2023
AU - Alhussein, Omar
AU - Wei, Moshi
AU - Akhavain, Arashmid
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Split learning is a privacy-preserving distributed learning paradigm in which an ML model (e.g., a neural network) is split into two parts (i.e., an encoder and a decoder). The encoder shares so-called latent representation, rather than raw data, for model training. In mobile-edge computing, network functions (such as traffic forecasting) can be trained via split learning where an encoder resides in a user equipment (UE) and a decoder resides in the edge network. Based on the data processing inequality and the information bottleneck (IB) theory, we present a new framework and training mechanism to enable a dynamic balancing of the transmission resource consumption with the informativeness of the shared latent representations, which directly impacts the predictive performance. The proposed training mechanism offers an encoder-decoder neural network architecture featuring multiple modes of complexity-relevance tradeoffs, enabling tunable performance. The adaptability can accommodate varying real-time network conditions and application requirements, potentially reducing operational expenditure and enhancing network agility. As a proof of concept, we apply the training mechanism to a millimeter-wave (mmWave)-enabled throughput prediction problem. We also offer new insights and highlight some challenges related to recurrent neural networks from the perspective of the IB theory. Interestingly, we find a compression phenomenon across the temporal domain of the sequential model, in addition to the compression phase that occurs with the number of training epochs.
AB - Split learning is a privacy-preserving distributed learning paradigm in which an ML model (e.g., a neural network) is split into two parts (i.e., an encoder and a decoder). The encoder shares so-called latent representation, rather than raw data, for model training. In mobile-edge computing, network functions (such as traffic forecasting) can be trained via split learning where an encoder resides in a user equipment (UE) and a decoder resides in the edge network. Based on the data processing inequality and the information bottleneck (IB) theory, we present a new framework and training mechanism to enable a dynamic balancing of the transmission resource consumption with the informativeness of the shared latent representations, which directly impacts the predictive performance. The proposed training mechanism offers an encoder-decoder neural network architecture featuring multiple modes of complexity-relevance tradeoffs, enabling tunable performance. The adaptability can accommodate varying real-time network conditions and application requirements, potentially reducing operational expenditure and enhancing network agility. As a proof of concept, we apply the training mechanism to a millimeter-wave (mmWave)-enabled throughput prediction problem. We also offer new insights and highlight some challenges related to recurrent neural networks from the perspective of the IB theory. Interestingly, we find a compression phenomenon across the temporal domain of the sequential model, in addition to the compression phase that occurs with the number of training epochs.
KW - information bottleneck
KW - NFV
KW - semantic communications
KW - split learning
KW - wireless edge learning
UR - http://www.scopus.com/inward/record.url?scp=85187390337&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM54140.2023.10437933
DO - 10.1109/GLOBECOM54140.2023.10437933
M3 - Conference contribution
AN - SCOPUS:85187390337
T3 - Proceedings - IEEE Global Communications Conference, GLOBECOM
SP - 4625
EP - 4631
BT - GLOBECOM 2023 - 2023 IEEE Global Communications Conference
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 4 December 2023 through 8 December 2023
ER -