Direct simulation of conjugate heat transfer of jet in channel crossflow

Zhao Wu, Dominique Laurence, Hector Iacovides, Imran Afgan

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

We present a DNS study of a hot, low momentum laminar water jet discharged into a cold turbulent channel stream through a circular orifice in one of the steel channel walls. The channel wall has a finite thickness and its outer side is cooled under Robin type thermal boundary conditions for a realistic external environment, leading to a conjugate heat transfer system. Nusselt number and r.m.s temperature fluctuations on the wall are compared with our earlier DNS results for the simpler iso-thermal and adiabatic conditions at the channel inner surface. Temperature fluctuations inside the channel wall are resolved to provide data for a conjugate heat transfer (CHT) thermal fatigue test case related to the ageing of pipe walls and welds studies, as found, for example, in power plant piping T-junctions. The crossflow Reynolds number is Re=3333, jet-to-crossflow velocity ratio is R=1/6 and fluid-to-solid conductivity ratio is 1/64. The near-wall mean flow structures, a horseshoe vortex ahead and on the sides of the jet orifice, a shallow recirculation behind the discharge and a counter-rotating vortex pair drawing in a blanket of cooler cross-flow, lead to a complex convective and turbulent wall heat transfer pattern around the orifice. The main findings are: (i) Wall maps of Nusselt number and r.m.s temperature, θr.m.s, for conjugate heat transfer are only qualitatively similar to the iso-thermal and adiabatic wall cases.(ii) Inside the solid θr.m.s and its dissipation, analysed from RANS modelling perspective, show that predicted thermal spot length scales are discontinuous on the interface, at variance with the 2-point spectrum-derived scales.(iii) At the high wavenumber range, the spanwise temperature spectra decrease according to exponential-decay spectral models for the fluid turbulence in the Kolmogorov range, but with large exponential coefficients increasing with depth inside the solid.

Original languageBritish English
Pages (from-to)193-208
Number of pages16
JournalInternational Journal of Heat and Mass Transfer
Volume110
DOIs
StatePublished - 2017

Keywords

  • Conjugate heat transfer
  • Direct numerical simulation
  • Jet in channel crossflow
  • Low jet-to-crossflow velocity ratio

Fingerprint

Dive into the research topics of 'Direct simulation of conjugate heat transfer of jet in channel crossflow'. Together they form a unique fingerprint.

Cite this