Abstract
The ternary strategy can be used to optimize the light harvesting, energy level alignment, and blend morphology of organic photovoltaics (OPVs). Therefore, herein four non-fullerene acceptors (NFAs), INDCDTT-b16 (1), INFDCDTT-b16 (2), INClDCDTT-b16 (3) and INBrDCDTT-b16 (4), featuring dicyclopentadithienothiophene (DCDTT) as the core with soluble branched alkyl side chains with indanone (IN), and its fluoro-(INF), chloro-(INCl) and bromo-(INBr) derivatives as an electron-accepting end group, have been rationally designed and synthesized from simple and readily available starting materials for PM6:Y6-based ternary OPVs. The thermal, optical and electrochemical properties of 1-4 have been studied extensively. Following optimization, the power conversion efficiency (PCE) increased from 15.26% for the PM6:Y6 based OPV to 16.27% for the PM6:Y6:INDCDTT-b16 (1) based OPV. In contrast, ternary OPVs based on NFAs 2, 3, and 4 exhibited PCEs of 14.58%, 15.11%, and 15.14%, respectively. Through tapping-mode atomic force microscopy and grazing-incidence wide-angle X-ray scattering analysis, we confirmed that the introduction of NFAs into PM6:Y6 binary blend films/devices enables adjustment of the blend morphology, leading to improvements in carrier mobility, bimolecular/trap-assisted suppressed recombination, and charge collection. This study demonstrates that our NFA molecular design strategy and further addition of INDCDTT-b16 (1) as a guest acceptor are effective for the construction of high-performance OPVs.
Original language | British English |
---|---|
Pages (from-to) | 2247-2257 |
Number of pages | 11 |
Journal | Journal of Materials Chemistry C |
Volume | 12 |
Issue number | 6 |
DOIs | |
State | Published - 18 Jan 2024 |