TY - JOUR
T1 - Development and application of an improved blade element momentum method model on horizontal axis wind turbines
AU - Liu, Su
AU - Janajreh, Isam
N1 - Funding Information:
The financial support was received from the Masdar Institute of Science & Technology. The generous sponsorship and data support of Sonkyo Energy team (Iñigo Portillo, Christophe Lopez, Javier Vidal, and José Luis) are also highly acknowledged.
PY - 2012
Y1 - 2012
N2 - Development of wind energy is gaining a great interest nowadays with over 25% annual growth in any configurations and sizes. Designing a wind turbine with improved performance remains the ultimate research and development goal. Therefore, understanding the influence of the different wind turbine key parameters, e.g., tip speed ratio (TSR), twist and pitch angles, number of blades, and airfoil chord distribution, is critical. In this work, an improved blade element model (BEM) is developed by correcting the code with tip loss, Buhl empirical correction, skewed wake, and rotational effect. These corrections are necessary to extend the application of the method to the turbulent wake regime for the horizontal axis wind turbine (HAWT) configuration. Results from the developed code are compared with the NREL measured data of the two-bladed Unsteady Aerodynamics Experiment (UAE) phase-VI turbine. They indicate an improved trend with the incorporation of these corrections. The performance of the three-bladed 3.5-kW HAWT was tested and found to follow closely the experimental trend. As the mismatch between these low fidelity analyses (BEM) and the experimental work persists, the undertaken analysis demonstrates its limitation, and it emphasizes the role of high fidelity wind tunnel and flow simulations. BEM analysis, however, shows that designing blades with proper twist and pitch angles, and targeting suitable TSR could lead to substantial gain (over 10%) in the performance.
AB - Development of wind energy is gaining a great interest nowadays with over 25% annual growth in any configurations and sizes. Designing a wind turbine with improved performance remains the ultimate research and development goal. Therefore, understanding the influence of the different wind turbine key parameters, e.g., tip speed ratio (TSR), twist and pitch angles, number of blades, and airfoil chord distribution, is critical. In this work, an improved blade element model (BEM) is developed by correcting the code with tip loss, Buhl empirical correction, skewed wake, and rotational effect. These corrections are necessary to extend the application of the method to the turbulent wake regime for the horizontal axis wind turbine (HAWT) configuration. Results from the developed code are compared with the NREL measured data of the two-bladed Unsteady Aerodynamics Experiment (UAE) phase-VI turbine. They indicate an improved trend with the incorporation of these corrections. The performance of the three-bladed 3.5-kW HAWT was tested and found to follow closely the experimental trend. As the mismatch between these low fidelity analyses (BEM) and the experimental work persists, the undertaken analysis demonstrates its limitation, and it emphasizes the role of high fidelity wind tunnel and flow simulations. BEM analysis, however, shows that designing blades with proper twist and pitch angles, and targeting suitable TSR could lead to substantial gain (over 10%) in the performance.
KW - BEM
KW - HAWT
KW - Pitch angle
KW - Power coefficient
KW - TSR
KW - Twist angle
UR - http://www.scopus.com/inward/record.url?scp=84873045716&partnerID=8YFLogxK
U2 - 10.1186/2251-6832-3-30
DO - 10.1186/2251-6832-3-30
M3 - Article
AN - SCOPUS:84873045716
SN - 2008-9163
VL - 3
JO - International Journal of Energy and Environmental Engineering
JF - International Journal of Energy and Environmental Engineering
IS - 1
M1 - 30
ER -