Design of A 100 kW concentrated solar power on demand volumetric receiver with integral thermal energy storage prototype

Antoni Gil, Daniel S. Codd, Lei Zhou, David Trumper, Ronald B. Campbell, Benjamin Grange, Nicolas Calvet, Peter Armstrong, Alexander H. Slocum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

A new concept of Thermal Energy Storage (TES) system based on current available technologies is being developed under the framework of the Masdar Institute (MI) and Massachusetts Institute of Technology (MIT) collaborative Flagship Program. The key feature of this concept lies on concentrating sun light directly on the molten salt storage tank, avoiding the necessity of pumping the salts to the top of a tower thereby avoiding thermal losses and pumping and electric tracing needs inherent in most conventional CSP plants. This Concentrated Solar Power on Demand (CSPonD) volumetric receiver/TES unit prototype will be tested in the existing MI heliostat field and beam down tower in Abu Dhabi (UAE) which will collect and redirect solar energy to an upwards-facing final optical element (FOE). These energy will be concentrated on the aperture of the prototype designed to store 400 kWh of energy allowing 16 hours of continuous production after sunset using Solar Salt (60%NaNO3 + 40%KNO3) as storage material. The tank is divided in two volumes: one cold in the bottom region, where Solar Salt is at 250°C and another hot on the upper region, at 550°C. A moving divider plate with active control separates both volumes. The plate includes mixing enhancement features to help with convection on the hot volume of salts. It's expected that results will demonstrate the technical feasibility and economic viability of this concept allowing its scale up at commercial size.

Original languageBritish English
Title of host publicationASME 2015 Power Conference, POWER 2015, collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
ISBN (Electronic)9780791856604
DOIs
StatePublished - 2015
EventASME 2015 Power Conference, POWER 2015, collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum - San Diego, United States
Duration: 28 Jun 20152 Jul 2015

Publication series

NameAmerican Society of Mechanical Engineers, Power Division (Publication) POWER
Volume2015-January

Conference

ConferenceASME 2015 Power Conference, POWER 2015, collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
Country/TerritoryUnited States
CitySan Diego
Period28/06/152/07/15

Fingerprint

Dive into the research topics of 'Design of A 100 kW concentrated solar power on demand volumetric receiver with integral thermal energy storage prototype'. Together they form a unique fingerprint.

Cite this