Design, kinematics and prototype of a flexible robot arm with planar springs

Peng Qi, Hongbin Liu, Lakmal Seneviratne, Kaspar Althoefer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Flexible robot arms have been developed for various medical and industrial applications because of their compliant structures enabling safe environmental interactions. This paper introduces a novel flexible robot arm comprising a number of elastically deformable planar spring elements arranged in series. The effects of flexure design variations on their layer compliance properties are investigated. Numerical studies of the different layer configurations are presented and finite Element Analysis (FEA) simulation is conducted. Based on the suspended platform's motion of each planar spring, this paper then provides a new method for kinematic modeling of the proposed robot arm. The approach is based on the concept of simultaneous rotation and the use of Rodrigues' rotation formula and is applicable to a wide class of continuum-style robot arms. At last, the flexible robot arms respectively integrated with two different types of compliance layers are prototyped. Preliminary test results are reported.

Original languageBritish English
Title of host publication39th Mechanisms and Robotics Conference
ISBN (Electronic)9780791857120
DOIs
StatePublished - 2015
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: 2 Aug 20155 Aug 2015

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5A-2015

Conference

ConferenceASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Country/TerritoryUnited States
CityBoston
Period2/08/155/08/15

Fingerprint

Dive into the research topics of 'Design, kinematics and prototype of a flexible robot arm with planar springs'. Together they form a unique fingerprint.

Cite this