@inproceedings{56932b20f3ab46b4adadb33d7a098761,
title = "Design and simulation of bipolar 4H-SiC memory architecture for high temperature applications",
abstract = "The increasing demand for electronics in harsh environment applications has inspired investigation of silicon carbide (SiC)-based devices and circuits, due to its superior electrical properties. Several researchers have demonstrated the viability of 4H-SiC control circuitry by developing small scale logic circuits entirely in 4H-SiC. However, development and design of memory elements, which is a critical component in any electronic system, is still not fully explored. To bridge this gap, this paper presents, a complete bipolar, static random access memory (SRAM) column that includes the memory cell and the peripheral circuitry, designed to exploit the unique properties of SiC. Simulation results for the proposed memory show stable operation across a wide range of temperatures (27 ºC – 500 ºC) with good noise margins and access speeds while running at a supply voltage as low as 5 V. This work validates the potential of developing memory architectures in 4H-SiC, paving the way for realizing small-sized digital systems for harsh environments.",
keywords = "4H-SiC, 4T-SRAM, Bipolar Junction Transistor (BJT), Bipolar memory integrated circuits, High speed, High temperature, Memory, SRAM",
author = "Hazem Elgabra and Amna Siddiqui and Shakti Singh",
note = "Publisher Copyright: {\textcopyright} 2018 Trans Tech Publications, Switzerland.; International Conference on Silicon Carbide and Related Materials, ICSCRM 2017 ; Conference date: 17-09-2017 Through 22-09-2017",
year = "2018",
doi = "10.4028/www.scientific.net/MSF.924.953",
language = "British English",
isbn = "9783035711455",
series = "Materials Science Forum",
pages = "953--957",
editor = "Robert Stahlbush and Philip Neudeck and Anup Bhalla and Devaty, {Robert P.} and Michael Dudley and Aivars Lelis",
booktitle = "Silicon Carbide and Related Materials, 2017",
}