TY - JOUR
T1 - Design and Analysis of Full-Duplex Massive Antenna Array Systems Based on Wireless Power Transfer
AU - Mohammadi, Mohammadali
AU - Chalise, Batu K.
AU - Suraweera, Himal A.
AU - Ngo, Hien Quoc
AU - Ding, Zhiguo
N1 - Funding Information:
Manuscript received July 15, 2020; revised October 1, 2020 and October 26, 2020; accepted October 27, 2020. Date of publication November 3, 2020; date of current version February 17, 2021. The work of M. Mohammadi was supported in part by the Research Deputy of Shahrekord University under grant number 97GRN1M1087 and 99GRN1M1087. The work of H. Q. Ngo was supported by the U.K. Research and Innovation Future Leaders Fellowships under Grant MR/S017666/1. This article was presented in part at the 2017 IEEE International Conference on Communications (ICC 2017), Paris, France. The associate editor coordinating the review of this article and approving it for publication was A. García Armada. (Corresponding author: Mohammadali Mohammadi.) Mohammadali Mohammadi is with the Faculty of Engineering, Shahrekord University, Shahrekord 88186-34141, Iran (e-mail: [email protected]).
Publisher Copyright:
© 1972-2012 IEEE.
PY - 2021/2
Y1 - 2021/2
N2 - In this paper, we consider a wireless communication system, where a full-duplex hybrid access point (HAP) transmits to a set of cellular users (CUs) in the downlink channel, while receiving data from a set of energy-constrained communication devices like user equipments (UEs) in the uplink channel. The HAP has a massive antenna array, while all CUs and UEs nodes are equipped with single antenna each. Time switching protocol is adopted, where channel estimation, wireless power transfer, and information transfer between UEs, CUs and full-duplex HAP are performed in two phases. By adopting maximum ratio combining/maximum ratio transmission (MRC/MRT) and zero-forcing (ZF) processing at the HAP, the uplink and downlink achievable rate expressions in the large-antenna limit and approximate results that hold for any finite number of antennas are derived. Moreover, the optimum energy beamformer and time-split parameter at the HAP are found to maximize the downlink sum-rate under a constraint on uplink sum-rate. Our findings reveal that our proposed energy beamforming with ZF and MRC/MRT processing for information transfer achieves up to 47% and 14% average sum rate gains as compared with the suboptimum energy beamformer, respectively.
AB - In this paper, we consider a wireless communication system, where a full-duplex hybrid access point (HAP) transmits to a set of cellular users (CUs) in the downlink channel, while receiving data from a set of energy-constrained communication devices like user equipments (UEs) in the uplink channel. The HAP has a massive antenna array, while all CUs and UEs nodes are equipped with single antenna each. Time switching protocol is adopted, where channel estimation, wireless power transfer, and information transfer between UEs, CUs and full-duplex HAP are performed in two phases. By adopting maximum ratio combining/maximum ratio transmission (MRC/MRT) and zero-forcing (ZF) processing at the HAP, the uplink and downlink achievable rate expressions in the large-antenna limit and approximate results that hold for any finite number of antennas are derived. Moreover, the optimum energy beamformer and time-split parameter at the HAP are found to maximize the downlink sum-rate under a constraint on uplink sum-rate. Our findings reveal that our proposed energy beamforming with ZF and MRC/MRT processing for information transfer achieves up to 47% and 14% average sum rate gains as compared with the suboptimum energy beamformer, respectively.
KW - beamforming
KW - Full-duplex (FD)
KW - massive multiple-input multiple-output
KW - wireless power transfer
UR - http://www.scopus.com/inward/record.url?scp=85101143026&partnerID=8YFLogxK
U2 - 10.1109/TCOMM.2020.3035401
DO - 10.1109/TCOMM.2020.3035401
M3 - Article
AN - SCOPUS:85101143026
SN - 0090-6778
VL - 69
SP - 1302
EP - 1316
JO - IEEE Transactions on Communications
JF - IEEE Transactions on Communications
IS - 2
M1 - 9247316
ER -