Depth extended online RPCA with spatiotemporal constraints for robust background subtraction

Sajid Javed, Theirry Bouwmans, Soon Ki Jung

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

The detection of moving objects is the first step in video surveillance systems. But due to the challenging backgrounds such as illumination conditions, color saturation, and shadows, etc., the state of the art methods do not provide accurate segmentation using only a single camera. Recently, subspace learning model such as Robust Principal Component analysis (RPCA) shows a very nice framework towards object detection. But, RPCA presents the limitations of computational and memory issues due to the batch optimization methods, and hence it cannot process high dimensional data. Recent research on RPCA methods such as Online RPCA (OR-PCA) alleviates the traditional RPCA limitations. However, OR-PCA using only color or intensity features shows a weak performance specially when the background and foreground objects have a similar color or shadows appear in the background scene. To handle these challenges, this paper presents an extension of OR-PCA with the integration of depth and color information for robust background subtraction. Depth is less affected by shadows or background/foreground color saturation issues. However, the foreground object may not be detected when it is far from the camera field as depth is less useful without color information. We show that the OR-PCA including spatiotemporal constraints provides accurate segmentation with the utilization of both color and depth features. Experimental evaluations on a well-defined benchmark dataset with other methods demonstrate that our proposed technique is a top performer using color and range information.

Original languageBritish English
Title of host publication2015 Frontiers of Computer Vision, FCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479917204
DOIs
StatePublished - 7 May 2015
Event2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision, FCV 2015 - Mokpo, Korea, Republic of
Duration: 28 Jan 201530 Jan 2015

Publication series

Name2015 Frontiers of Computer Vision, FCV 2015

Conference

Conference2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision, FCV 2015
Country/TerritoryKorea, Republic of
CityMokpo
Period28/01/1530/01/15

Keywords

  • Background subtraction
  • Color features
  • Disparity
  • OR-PCA

Fingerprint

Dive into the research topics of 'Depth extended online RPCA with spatiotemporal constraints for robust background subtraction'. Together they form a unique fingerprint.

Cite this