Depressive Disorder Remote Detection through Touchscreen Typing Behaviour

Ruba Fadul, Hessa Alfalahi, Aamna Al Shehhi, Leontios Hadjileontiadis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Depressive Disorder (DD) is a leading cause of disability worldwide. Passive tools for screening the symptoms of DD are essential in monitoring and limiting the spread of the disease. From an alternative perspective, individuals' kinetic expression and activities, including smartphone interaction, reflect their mental status. Such widely available data in everyday life form a promising source of information on keystroke dynamics and their characteristics. This work explores how keystroke dynamics derived from touchscreen typing patterns have revealed the diagnosis of mental disorders, particularly depressive disorders. Different deep learning approaches were established to detect patients' depressive tendencies denoted by the self-reported Patient Health Questionnaire-9 (PHQ-9) score based on keystroke digital biomarkers. In particular, Convolutional Neural Networks (CNN), Long-Short-Term-Memory (LSTM), and CNN-LSTM models were examined and compared. The keystroke sequences are captured unobtrusively during routine interaction with touchscreen smartphones in a non-clinical setting. This study used 23,264 typing sessions provided by 10 DD patients and 14 healthy controls (HC). The proposed approach was investigated under two keystroke feature combinations and validated utilizing a leave-one-subject-out (LOSO) cross-validation scheme. The best-performing LSTM-with-hold-time (LSTM-HT) model achieved an Area Under Curve (AUC) of 0.86 with the correlated probabilities for subjects' status [95% confidence interval (CI):0.66-1.00, sensitivity/specificity (SE/SP) of 0.8/0.93].Clinical relevance - The findings of this research have the potential to contribute to improving digital tools for objectively screening mental disorders in the wild. Moreover, they would potentially provide the users and their attending psychiatrists with information regarding the evolution of their mental health.

Original languageBritish English
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'Depressive Disorder Remote Detection through Touchscreen Typing Behaviour'. Together they form a unique fingerprint.

Cite this