Data Augmentation for Graph Convolutional Network on Semi-supervised Classification

Zhengzheng Tang, Ziyue Qiao, Xuehai Hong, Yang Wang, Fayaz Ali Dharejo, Yuanchun Zhou, Yi Du

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Data augmentation aims to generate new and synthetic features from the original data, which can identify a better representation of data and improve the performance and generalizability of downstream tasks. However, data augmentation for graph-based models remains a challenging problem, as graph data is more complex than traditional data, which consists of two features with different properties: graph topology and node attributes. In this paper, we study the problem of graph data augmentation for Graph Convolutional Network (GCN) in the context of improving the node embeddings for semi-supervised node classification. Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes and new graph topologies, and we combine them as new pairwise inputs for specific GCNs. Then, we propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings. We also conduct a disparity constraint on these hidden node embeddings when training to ensure that non-redundant information is captured from different features. Experimental results on five real-world datasets show that our method improves the classification accuracy with a clear margin (+2.5%–+84.2%) than the original GCN model.

Original languageBritish English
Title of host publicationWeb and Big Data - 5th International Joint Conference, APWeb-WAIM 2021, Proceedings
EditorsLeong Hou U, Marc Spaniol, Yasushi Sakurai, Junying Chen
PublisherSpringer Science and Business Media Deutschland GmbH
Pages33-48
Number of pages16
ISBN (Print)9783030858988
DOIs
StatePublished - 2021
Event5th International Joint Conference on Asia-Pacific Web and Web-Age Information Management, APWeb-WAIM 2021 - Guangzhou, China
Duration: 23 Aug 202125 Aug 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12859 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference5th International Joint Conference on Asia-Pacific Web and Web-Age Information Management, APWeb-WAIM 2021
Country/TerritoryChina
CityGuangzhou
Period23/08/2125/08/21

Keywords

  • Data augmentation
  • Graph Convolutional Network
  • Semi-supervised classification

Fingerprint

Dive into the research topics of 'Data Augmentation for Graph Convolutional Network on Semi-supervised Classification'. Together they form a unique fingerprint.

Cite this