Abstract
The smooth and robust injection of wind power into the utility grid requires stable, robust, and simple control strategies. The super-twisting sliding mode control (STSMC), a variant of the sliding mode control (SMC), is an effective approach employed in wind energy systems for providing smooth power transfer, robustness, inherent chattering suppression and error-free control. The STSMC has certain disadvantages of (a) less anti-disturbance capabilities due to the non-linear part that is based on variable approaching law and (b) time delay created by the disturbance and uncertainties. This paper enhances the anti-disturbance capabilities of STSMC by combining the attributes of artificial intelligence with STSMC. Initially, the STSMC is designed for both the inner and outer loop of a doubly fed induction generator (DFIG) based wind energy conversion system (WECS). Then, an artificial neural network (ANN)-based compensation term is added to improve the convergence and anti-disturbance capabilities of STSMC. The proposed ANN based STSMC paradigm is validated using a processor in the loop (PIL) based experimental setup carried out in Matlab/Simulink.
Original language | British English |
---|---|
Pages (from-to) | 97625-97641 |
Number of pages | 17 |
Journal | IEEE Access |
Volume | 10 |
DOIs | |
State | Published - 2022 |
Keywords
- artificial intelligence
- Sliding mode control
- super-twisting
- wind energy