Controllable rotation workspace of a metamorphic parallel mechanism with reconfigurable universal joints

Dongming Gan, Jian S. Dai, Jorge Dias, Lakmal D. Seneviratne

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper introduces a metamorphic parallel mechanism which has three topologies with pure translational, pure rotational and 3T1R degrees of freedom. Mobility change stemming from the reconfigurability of a reconfigurable Hooke (rT) joint is illustrated by change of the limb twist screw systems and the platform constraint screw system. Then the paper focuses on the pure rotational topology of the mechanism of which the rotational center can be altered along the central line perpendicular to the base plane by altering the radial rotational axes in the limbs. Singularity analysis is conducted based on the dependency of constraint forces and actuation forces in a screw based Jacobian matrix. Following these, rotation workspace variation is demonstrated in a 2D projection format using the Tilt-and-Torsion Euler angles based on the actuation limits and joint rotation ranges.

Original languageBritish English
Title of host publication37th Mechanisms and Robotics Conference
DOIs
StatePublished - 2013
EventASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013 - Portland, OR, United States
Duration: 4 Aug 20137 Aug 2013

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6 A

Conference

ConferenceASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Country/TerritoryUnited States
CityPortland, OR
Period4/08/137/08/13

Fingerprint

Dive into the research topics of 'Controllable rotation workspace of a metamorphic parallel mechanism with reconfigurable universal joints'. Together they form a unique fingerprint.

Cite this