Conjugate heat transfer in stratified two-fluid flows with a growing deposit layer

H. Y. Li, Y. F. Yap, J. Lou, J. C. Chai, Z. Shang

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The article presents a numerical model for moving boundary conjugate heat transfer in stratified two-fluid flows with a growing deposit layer. The model is applicable to other general moving boundary conjugate heat transfer problem in a two-fluid flow environment with deposition occurring simultaneously. The level-set method is adopted to capture the fluid-fluid interface and fluid-deposit interface. The governing equations are solved using a finite volume method. Upon verification of the model, the effects of inlet velocity ratio, Damköhler number and thermal conductivity ratio on the flow, deposition as well as heat transfer are investigated. Generally, Nusselt number on the lower wall (with a growing deposit layer), Nulx and upper wall, Nuux show distinct features with the change of these parameters. Nuux increases with the increase of lower fluid layer (fluid 1) inlet velocity and the thermal conductivity of deposit layer while it decreases with the increase of Damkholer number. Nulx varies differently in the upstream and the downstream of the channel. A higher lower fluid layer (fluid 1) velocity and a higher thermal conductivity of deposit layer result in a higher Nulx upstream but a lower Nulx downstream. However, a higher Damkholer number results in a lower Nulx upstream and a higher Nulx downstream.

Original languageBritish English
Pages (from-to)215-228
Number of pages14
JournalApplied Thermal Engineering
Volume113
DOIs
StatePublished - 25 Feb 2017

Keywords

  • Conjugate heat transfer
  • Deposition
  • Level-set method
  • Stratified two-fluid flow

Fingerprint

Dive into the research topics of 'Conjugate heat transfer in stratified two-fluid flows with a growing deposit layer'. Together they form a unique fingerprint.

Cite this