Abstract
Superposed photon-added and photon-subtracted squeezed-vacuum states exhibit sub-Planck phase-space structures and metrological potential similar to the original compass states (superposition of four coherent states), but are more closely tied to modern experiments. Here, we observe that these compasslike states are highly susceptible to loss of quantum coherence when placed in contact with a thermal reservoir; that is, the interaction with the thermal reservoir causes decoherence, which progressively suppresses the capacity of these states to exhibit interference traits. We focus on the sub-Planck structures of these states and find that decoherence effects on these features are stronger with increasing the average thermal photon number of the reservoir, the squeezing parameter, or the quantity of added (or subtracted) photons to the squeezed-vacuum states. Furthermore, we observe that the sub-Planck structures of the photon-subtracted case survive comparatively longer in the thermal reservoir than their counterparts in the photon-added case, and prolonged contact with the thermal reservoir converts these compasslike states into a classical state.
Original language | British English |
---|---|
Article number | 053718 |
Journal | Physical Review A |
Volume | 109 |
Issue number | 5 |
DOIs | |
State | Published - May 2024 |