TY - JOUR
T1 - Comparative Analysis of Support Vector Machine Regression and Gaussian Process Regression in Modeling Hydrogen Production from Waste Effluent
AU - Hossain, SK Safdar
AU - Ayodele, Bamidele Victor
AU - Ali, Syed Sadiq
AU - Cheng, Chin Kui
AU - Mustapa, Siti Indati
N1 - Funding Information:
The authors acknowledge the Deanship of Scientific Research at King Faisal University for the financial support under the Research Group Support Track (Grant no. 1811012).
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - Organic-rich substrates from organic waste effluents are ideal sources for hydrogen production based on the circular economy concept. In this study, a data-driven approach was employed in modeling hydrogen production from palm oil mill effluents and activated sludge waste. Seven models built on support vector machine (SVM) and Gaussian process regression (GPR) were employed for the modeling of the hydrogen production from the waste sources. The SVM was incorporated with linear kernel function (LSVM), quadratic kernel function (QSVM), cubic kernel function (CSVM), and Gaussian fine kernel function (GFSVM). While the GPR was incorporated with the rotational quadratic kernel function (RQGPR), squared exponential kernel function (SEGPR), and exponential kernel function (EGPR). The model performance revealed that the SVM-based models did not show impressive performance in modeling the hydrogen production from the palm oil mill effluent, as indicated by the R2 of −0.01, 0.150, and 0.143 for LSVM, QSVM, and CSVM, respectively. Similarly, the SVM-based models did not perform well in modeling the hydrogen production from activated sludge, as evidenced by R2 values of 0.040, 0.190, and 0.340 for LSVM, QSVM, and CSVM, respectively. On the contrary, the SEGPR, RQGPR, SEGPR, and EGPR models displayed outstanding performance in modeling the prediction of hydrogen production from both oil palm mill effluent and activated sludge, with over 90% of the datasets explaining the variation in the model output. With the R2 > 0.9, the predicted hydrogen production was consistent with the SEGPR, RQGPR, SEGPR, and EGPR with minimized prediction errors. The level of importance analysis revealed that all the input parameters are relevant in the production of hydrogen. How-ever, the influent chemical oxygen demand (COD) concentration and the medium temperature significantly influenced the hydrogen production from palm oil mill effluent, whereas the pH of the medium and the temperature significantly influenced the hydrogen production from the activated sludge.
AB - Organic-rich substrates from organic waste effluents are ideal sources for hydrogen production based on the circular economy concept. In this study, a data-driven approach was employed in modeling hydrogen production from palm oil mill effluents and activated sludge waste. Seven models built on support vector machine (SVM) and Gaussian process regression (GPR) were employed for the modeling of the hydrogen production from the waste sources. The SVM was incorporated with linear kernel function (LSVM), quadratic kernel function (QSVM), cubic kernel function (CSVM), and Gaussian fine kernel function (GFSVM). While the GPR was incorporated with the rotational quadratic kernel function (RQGPR), squared exponential kernel function (SEGPR), and exponential kernel function (EGPR). The model performance revealed that the SVM-based models did not show impressive performance in modeling the hydrogen production from the palm oil mill effluent, as indicated by the R2 of −0.01, 0.150, and 0.143 for LSVM, QSVM, and CSVM, respectively. Similarly, the SVM-based models did not perform well in modeling the hydrogen production from activated sludge, as evidenced by R2 values of 0.040, 0.190, and 0.340 for LSVM, QSVM, and CSVM, respectively. On the contrary, the SEGPR, RQGPR, SEGPR, and EGPR models displayed outstanding performance in modeling the prediction of hydrogen production from both oil palm mill effluent and activated sludge, with over 90% of the datasets explaining the variation in the model output. With the R2 > 0.9, the predicted hydrogen production was consistent with the SEGPR, RQGPR, SEGPR, and EGPR with minimized prediction errors. The level of importance analysis revealed that all the input parameters are relevant in the production of hydrogen. How-ever, the influent chemical oxygen demand (COD) concentration and the medium temperature significantly influenced the hydrogen production from palm oil mill effluent, whereas the pH of the medium and the temperature significantly influenced the hydrogen production from the activated sludge.
KW - activated sludge
KW - gaussian process progression
KW - hydrogen
KW - palm oil mill effluent
KW - support vector machine
UR - https://www.scopus.com/pages/publications/85132365407
U2 - 10.3390/su14127245
DO - 10.3390/su14127245
M3 - Article
AN - SCOPUS:85132365407
SN - 2071-1050
VL - 14
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 12
M1 - 7245
ER -