Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke

Mohamed L. Seghier, François Lazeyras, Slava Zimine, Stephan E. Maier, Sylviane Hanquinet, Jacqueline Delavelle, Joseph J. Volpe, Petra S. Huppi

Research output: Contribution to journalArticlepeer-review

91 Scopus citations


Focal ischemic brain injury, or stroke, is an important cause of later handicap in children. Early assessment of structure-function relationships after such injury will provide insight into clinico-anatomic correlation and potentially guide early intervention strategies. We used combined functional MRI (fMRI) with diffusion tensor imaging (DTI) in a 3-month-old infant to explore the structure-function relationship after unilateral perinatal stroke that involved the visual pathways. With visual stimuli, fMRI showed a negative BOLD activation in the visual cortex of the intact right hemisphere, principally in the anterior part, and no activation in the injured hemisphere. The functional activation in the intact hemisphere correlated clearly with the fiber tract of the optic radiation visualized with DTI. DTI confirmed the absence of the optic radiation in the damaged left hemisphere. In addition, event-related fMRI (ER-fMRI) experiments were performed to define the characteristics of the BOLD response. The shape is that of an inverted gamma function (similar to a negative mirror image of the known positive adult BOLD response). The maximum decrease was reached at 5-7 s with signal changes of -1. 7 ± 0.4%. Thus, this report describes for the first time the combined use of DTI and event-related fMRI in an infant and provides insight into the localization of the fMRI visual response in the young infant and the characteristics of the BOLD response.

Original languageBritish English
Pages (from-to)463-472
Number of pages10
Issue number1
StatePublished - Jan 2004


  • Diffusion tensor imaging
  • Event-related fMRI
  • Negative BOLD response
  • Perinatal stroke
  • Visual system


Dive into the research topics of 'Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke'. Together they form a unique fingerprint.

Cite this