TY - JOUR
T1 - Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species
AU - Rahmani, Mohamed
AU - Reese, Erin
AU - Dai, Yun
AU - Bauer, Cheryl
AU - Payne, Shawn G.
AU - Dent, Paul
AU - Spiegel, Sarah
AU - Grant, Steven
PY - 2005/3/15
Y1 - 2005/3/15
N2 - Interactions between histone deacetylase inhibitors (HDA-CIs) and the alkyl-lysophospholipid perifosine were examined in human leukemia cells. Coadministration of sodium butyrate, suberoylanilide hydroxamic acid (SAHA), or trichostatin with perifosine synergistically induced mitochondrial dysfunction (cytochrome c and apoptosis-inducing factor release), caspase-3 and -8 activation, apoptosis, and a marked decrease in cell growth in U937 as well as HL-60 and Jurkat leukemia cells. These events were associated with inactivation of extracellular signal-regulated kinase (ERK) 1/2 and Akt, p46 c-jun-NH 2-kinase (JNK) activation, and a pronounced increase in generation of ceramide and reactive oxygen species (ROS). They were also associated with up-regulation of Bak and a marked conformational change in Bax accompanied by membrane translocation. Ectopic expression of Bcl-2 delayed but was ultimately ineffective in preventing perifosine/HDACI-mediated apoptosis. Enforced expression of constitutively active mitogen-activated protein kinase kinase (MEK) 1 or myristoylated Akt blocked HDACI/perifosine-mediated ceramide production and cell death, suggesting that MEK/ERK and Akt inactivation play a primary role in these phenomena. However, inhibition of JNK activation (e.g., by the JNK inhibitor SP600125) did not attenuate sodium butyrate/perifosine- induced apoptosis. In addition, the free radical scavenger N-acetyl-L-cysteine attenuated ROS generation and apoptosis mediated by combined treatment. Finally, the acidic sphingomyelinase inhibitor desipramine attenuated HDACI/perifosine-mediated ceramide and ROS production as well as cell death. Together, these findings indicate that coadministration of HDACIs with perifosine in human leukemia cells leads to Akt and MEK/ERK disruption, a marked increase in ceramide and ROS production, and a striking increase in mitochondrial injury and apoptosis. They also raise the possibility that combining these agents may represent a novel antileukemic strategy.
AB - Interactions between histone deacetylase inhibitors (HDA-CIs) and the alkyl-lysophospholipid perifosine were examined in human leukemia cells. Coadministration of sodium butyrate, suberoylanilide hydroxamic acid (SAHA), or trichostatin with perifosine synergistically induced mitochondrial dysfunction (cytochrome c and apoptosis-inducing factor release), caspase-3 and -8 activation, apoptosis, and a marked decrease in cell growth in U937 as well as HL-60 and Jurkat leukemia cells. These events were associated with inactivation of extracellular signal-regulated kinase (ERK) 1/2 and Akt, p46 c-jun-NH 2-kinase (JNK) activation, and a pronounced increase in generation of ceramide and reactive oxygen species (ROS). They were also associated with up-regulation of Bak and a marked conformational change in Bax accompanied by membrane translocation. Ectopic expression of Bcl-2 delayed but was ultimately ineffective in preventing perifosine/HDACI-mediated apoptosis. Enforced expression of constitutively active mitogen-activated protein kinase kinase (MEK) 1 or myristoylated Akt blocked HDACI/perifosine-mediated ceramide production and cell death, suggesting that MEK/ERK and Akt inactivation play a primary role in these phenomena. However, inhibition of JNK activation (e.g., by the JNK inhibitor SP600125) did not attenuate sodium butyrate/perifosine- induced apoptosis. In addition, the free radical scavenger N-acetyl-L-cysteine attenuated ROS generation and apoptosis mediated by combined treatment. Finally, the acidic sphingomyelinase inhibitor desipramine attenuated HDACI/perifosine-mediated ceramide and ROS production as well as cell death. Together, these findings indicate that coadministration of HDACIs with perifosine in human leukemia cells leads to Akt and MEK/ERK disruption, a marked increase in ceramide and ROS production, and a striking increase in mitochondrial injury and apoptosis. They also raise the possibility that combining these agents may represent a novel antileukemic strategy.
UR - http://www.scopus.com/inward/record.url?scp=15944406971&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-04-2440
DO - 10.1158/0008-5472.CAN-04-2440
M3 - Article
C2 - 15781658
AN - SCOPUS:15944406971
SN - 0008-5472
VL - 65
SP - 2422
EP - 2432
JO - Cancer Research
JF - Cancer Research
IS - 6
ER -