Abstract
Hierarchical federated learning (HFL) shows great advantages over conventional two-layer federated learning (FL) in reducing network overhead and interaction latency while still retaining the data privacy of distributed FL clients. However, the communication and energy overhead still pose a bottleneck for HFL performance, especially as the number of clients raises dramatically. To tackle this issue, we propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation in this paper, aiming to minimize the total cost of time and energy at each HFL global round. Specifically, we first propose a novel fuzzy logic based client selection policy considering client heterogeneity in multiple aspects, including channel quality, data quantity and model staleness. Subsequently, given the fuzzy based client-edge association, a joint edge server scheduling and resource allocation problem is formulated. Utilizing problem decomposition, we firstly derive the closed-form solution for the edge server scheduling subproblem via the penalty dual decomposition (PDD) method. Next, a deep deterministic policy gradient (DDPG) based algorithm is proposed to tackle the resource allocation subproblem considering time-varying environments. Finally, extensive simulations demonstrate that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
Original language | British English |
---|---|
Pages (from-to) | 1 |
Number of pages | 1 |
Journal | IEEE Transactions on Wireless Communications |
DOIs | |
State | Accepted/In press - 2024 |
Keywords
- Client selection
- Costs
- Data models
- deep reinforcement learning
- Fuzzy logic
- hierarchical federated learning
- NOMA
- resource allocation
- Resource management
- Servers
- Training