Chitosan/MoS2/GO membrane for catalytic degradation of organic contaminants

Delal E. Al Momani, Fathima Arshad, Linda Zou

    Research output: Contribution to journalArticlepeer-review

    8 Scopus citations

    Abstract

    Nanocomposite membranes were fabricated by incorporating MoS2 and GO nanomaterials in the chitosan polymer matrix. The higher polymer to nanomaterial ratio resulted in more porous CMG2 membrane than CMG1 membrane. In comparison of the membranes’ performance, the control membrane without nanomaterials only had minimal removal of organic matter, whereas both nanocomposite membranes achieved 95–100 % color removal. CMG2 also achieved 100 % TOC removals of MO solutions whereas the TOC removal by CMG1 was less complete. The MoS2 nanoparticles induced catalytic effect to degradate organic matter. The GO nanosheets also introduced a more substantial negative charge to enhance the separation and rejection of organic contaminants. In addition, a faster treatment kinetics per filtration cycle was also displayed by CMG2 than that of CMG1. This was due to its higher posoristy facilitated better access to the MoS2 nanomaterials, for the dye molecules interacting with catalytic sites. Chitosan/MoS2/GO membrane could be a promising membrane-based solution for efficient catalytic degradation of organic contaminants in water and wastewater treatment.

    Original languageBritish English
    Article number103410
    JournalEnvironmental Technology and Innovation
    Volume32
    DOIs
    StatePublished - Nov 2023

    Keywords

    • Chitosan
    • GO
    • MoS
    • Nanocomposite membrane
    • Peroxydase-like nanozyme

    Fingerprint

    Dive into the research topics of 'Chitosan/MoS2/GO membrane for catalytic degradation of organic contaminants'. Together they form a unique fingerprint.

    Cite this