TY - JOUR
T1 - Characterization and Preliminary Application of a Novel Lipoxygenase from Enterovibrio norvegicus
AU - Zhang, Bingjie
AU - Chen, Meirong
AU - Xia, Bingjie
AU - Lu, Zhaoxin
AU - Khoo, Kuan Shiong
AU - Show, Pau Loke
AU - Lu, Fengxia
N1 - Funding Information:
This research was funded by the National Natural Science Foundation of China (no. 31470095).
Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - Lipoxygenases have proven to be a potential biocatalyst for various industrial applications. However, low catalytic activity, low thermostability, and narrow range of pH stability largely limit its application. Here, a lipoxygenase (LOX) gene from Enterovibrio norvegicus DSM 15893 (EnLOX) was cloned and expressed in Escherichia coli BL21 (DE3). EnLOX showed the catalytic activity of 40.34 U mg−1 at 50 °C, pH 8.0. Notably, the enzyme showed superior thermostability, and wide pH range stability. EnLOX remained above 50% of its initial activity after heat treatment below 50 °C for 6 h, and its melting point temperature reached 78.7 °C. More than 70% of its activity was maintained after incubation at pH 5.0–9.5 and 4 °C for 10 h. In addition, EnLOX exhibited high substrate specificity towards linoleic acid, and its kinetic parameters of Vmax, Km, and Kcat values were 12.42 mmol min−1 mg−1, 3.49 μmol L−1, and 16.86 s−1, respectively. LC-MS/MS analysis indicated that EnLOX can be classified as 13-LOX, due to its ability to catalyze C18 polyunsaturated fatty acid to form 13-hydroxy fatty acid. Additionally, EnLOX could improve the farinograph characteristics and rheological properties of wheat dough. These results reveal the potential applications of EnLOX in the food industry.
AB - Lipoxygenases have proven to be a potential biocatalyst for various industrial applications. However, low catalytic activity, low thermostability, and narrow range of pH stability largely limit its application. Here, a lipoxygenase (LOX) gene from Enterovibrio norvegicus DSM 15893 (EnLOX) was cloned and expressed in Escherichia coli BL21 (DE3). EnLOX showed the catalytic activity of 40.34 U mg−1 at 50 °C, pH 8.0. Notably, the enzyme showed superior thermostability, and wide pH range stability. EnLOX remained above 50% of its initial activity after heat treatment below 50 °C for 6 h, and its melting point temperature reached 78.7 °C. More than 70% of its activity was maintained after incubation at pH 5.0–9.5 and 4 °C for 10 h. In addition, EnLOX exhibited high substrate specificity towards linoleic acid, and its kinetic parameters of Vmax, Km, and Kcat values were 12.42 mmol min−1 mg−1, 3.49 μmol L−1, and 16.86 s−1, respectively. LC-MS/MS analysis indicated that EnLOX can be classified as 13-LOX, due to its ability to catalyze C18 polyunsaturated fatty acid to form 13-hydroxy fatty acid. Additionally, EnLOX could improve the farinograph characteristics and rheological properties of wheat dough. These results reveal the potential applications of EnLOX in the food industry.
KW - application
KW - characterization
KW - Enterovibrio norvegicus
KW - lipoxygenase
UR - http://www.scopus.com/inward/record.url?scp=85138600936&partnerID=8YFLogxK
U2 - 10.3390/foods11182864
DO - 10.3390/foods11182864
M3 - Article
AN - SCOPUS:85138600936
SN - 2304-8158
VL - 11
JO - Foods
JF - Foods
IS - 18
M1 - 2864
ER -