CFD simulation for separation of carbon dioxide-methane mixture by pressure swing adsorption

K. Rambabu, L. Muruganandam, S. Velu

    Research output: Contribution to journalArticlepeer-review

    18 Scopus citations


    A developing technology for gas separations is pressure swing adsorption, which has been proven to be more economical and energy efficient compared to other separation methods like cryogenic distillation and membrane separation. A pressure swing adsorption (PSA) column, with carbon dioxide-methane as feed mixture and 6-FDA based polyimides as the adsorbent, was modeled and simulated in this work. Ansys Fluent 12.1, along with supplementary user defined functions, was used to develop a 2D transient Eulerian laminar viscous flow model for the PSA column. The model was validated by comparing the simulated results with established analytical models for PSA. The developed numerical model was used to determine the carbon dioxide concentration in the column as a function of time based on different operating conditions. Effect of various operating parameters like pressure, temperature, and flow rate on the separation efficiency has been studied and reported. Optimization studies were carried out to obtain suitable operating conditions for the feed gases separation. Simulation studies were carried out to determine the separation length required for complete separation of the feed mixture corresponding to different inlet feed concentrations which were entering the column at a given flow rate.

    Original languageBritish English
    Article number402756
    JournalInternational Journal of Chemical Engineering
    StatePublished - 2014


    Dive into the research topics of 'CFD simulation for separation of carbon dioxide-methane mixture by pressure swing adsorption'. Together they form a unique fingerprint.

    Cite this