Cerium oxide catalysts for oxidative coupling of methane reaction: Effect of lithium, samarium and lanthanum dopants

G. I. Siakavelas, N. D. Charisiou, A. AlKhoori, V. Sebastian, S. J. Hinder, M. A. Baker, I. V. Yentekakis, K. Polychronopoulou, M. A. Goula

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The work presented herein reports on the oxidative coupling of methane (OCM) performance of a series of Li-free and Li-doped CeO2 and CeO2 modified with Sm3+ and La3+ catalysts. The supporting materials (Ce, Sm-Ce and La-Sm-Ce metal oxides) were synthesized using the microwave assisted sol-gel method in order to achieve nanophase complex materials with increased particle surface energy and reactivity. Lithium ions were added, using the wet impregnation technique, in order to further improve the physicochemical characteristics and reinforce the activity and selectivity, in terms of C2H6 and C2H4 production. All materials were characterized using N2 adsorption-desorption, XRD, Raman spectroscopy, CO2-TPD, H2-TPR, SEM and XPS. We showed that the addition of lithium species changed the reaction pathway and drastically enhanced the production of ethylene and ethane, mainly for the promoted catalysts (Li/Sm-Ce and Li/La-Sm-Ce). In particular, the presence and the synergy between the electrophilic oxygen species (peroxide and superoxide), population of oxygen vacancy sites and the surface moderate basic sites determined the reaction pathway and the desirable product distribution.

Original languageBritish English
Article number107259
JournalJournal of Environmental Chemical Engineering
Volume10
Issue number2
DOIs
StatePublished - Apr 2022

Keywords

  • C production
  • Cerium-doped catalysts, Trivalent ions
  • Electrophilic oxygen species
  • Oxidative coupling of methane

Fingerprint

Dive into the research topics of 'Cerium oxide catalysts for oxidative coupling of methane reaction: Effect of lithium, samarium and lanthanum dopants'. Together they form a unique fingerprint.

Cite this