Catalytic properties of phosphate-coated CuFe2O4 nanoparticles for phenol degradation

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Copper ferrite (CuFe2O4) nanoparticles were prepared using the sol-gel autocombustion method and then coated with phosphate using different treatments with H3PO4. The structural and chemical properties of the phosphate-coated CuFe2O4 nanoparticles were controlled by changing the concentration of H3PO4 during the coating process. The prepared nanoparticles were characterized using XRD, FTIR, SEM, and EDS which provided information about the catalysts' structure, chemical composition, purity, and morphology. The catalytic and photocatalytic activities of the phosphate-coated CuFe2O4 samples were tested and evaluated for the degradation of phenol using HPLC. The prepared nanoparticles successfully emerged as excellent heterogeneous Fenton-type catalysts for phenol degradation. The phosphate-coated CuFe2O4 catalysts exhibited a higher catalytic activity compared with the uncoated CuFe2O4 ones. Such a higher catalytic performance can be attributed to enhanced morphological, electronic, and chemical properties of the phosphate-coated CuFe2O4 nanoparticles. Additionally, the phosphate-coated CuFe2O4 nanoparticles also revealed a higher catalytic activity compared with TiO2 nanoparticles. Different experimental conditions were investigated, and complete removal of phenol was achieved under specific conditions.

Original languageBritish English
Article number3698326
JournalJournal of Nanomaterials
Volume2019
DOIs
StatePublished - 2019

Fingerprint

Dive into the research topics of 'Catalytic properties of phosphate-coated CuFe2O4 nanoparticles for phenol degradation'. Together they form a unique fingerprint.

Cite this