TY - GEN
T1 - Cache design for low power and high yield
AU - Mohammad, Baker
AU - Saint-Laurent, Martin
AU - Bassett, Paul
AU - Abraham, Jacob
PY - 2008
Y1 - 2008
N2 - A novel circuit approach to increase SRAM Static Noise Margin (SNM) and enable lower operating voltage is described. Increasing process variability [1] [2] for new technologies coupled with increased reliability effects like Negative Bias Temperature Instability (NBTI) [3] all contribute to raising the minimum voltage required for stable SRAM. Our strategy is to improve the noise margin of the 6T SRAM cell by reducing the effect of parametric variation of the cell [4], especially in the low voltage operation mode. This is done using a novel circuit that selectively reduces the voltage swing on the world line and reduces the memory supply voltage during write operation. The proposed design increases the SRAM Static Noise Margin (SNM) and write margin using a single voltage supply and with minimum impact to chip area, complexity, and timing. The technique supports both on-chip corner identification to adapt the SRAM behavior to silicon, and software controllability to tradeoff yield, power, and performance.
AB - A novel circuit approach to increase SRAM Static Noise Margin (SNM) and enable lower operating voltage is described. Increasing process variability [1] [2] for new technologies coupled with increased reliability effects like Negative Bias Temperature Instability (NBTI) [3] all contribute to raising the minimum voltage required for stable SRAM. Our strategy is to improve the noise margin of the 6T SRAM cell by reducing the effect of parametric variation of the cell [4], especially in the low voltage operation mode. This is done using a novel circuit that selectively reduces the voltage swing on the world line and reduces the memory supply voltage during write operation. The proposed design increases the SRAM Static Noise Margin (SNM) and write margin using a single voltage supply and with minimum impact to chip area, complexity, and timing. The technique supports both on-chip corner identification to adapt the SRAM behavior to silicon, and software controllability to tradeoff yield, power, and performance.
UR - http://www.scopus.com/inward/record.url?scp=49749117878&partnerID=8YFLogxK
U2 - 10.1109/ISQED.2008.4479707
DO - 10.1109/ISQED.2008.4479707
M3 - Conference contribution
AN - SCOPUS:49749117878
SN - 0769531172
SN - 9780769531175
T3 - Proceedings of the 9th International Symposium on Quality Electronic Design, ISQED 2008
SP - 103
EP - 107
BT - Proceedings of the 9th International Symposium on Quality Electronic Design, ISQED 2008
T2 - 9th International Symposium on Quality Electronic Design, ISQED 2008
Y2 - 17 March 2008 through 19 March 2008
ER -