Abstract
Nanostructures have attracted tremendous attention from researchers in various disciplines because their high surface-to-volume ratio and high crystal quality are highly desirable for many technological applications including biosensors, tissue engineering and drug delivery system. Several synthetic methods have been used to fabricate various nanostructures. These synthetic approaches are mainly categorized into two main classes according to how the nanostructure is formed: dry and wet chemical synthesis. Both the methods have their pros and cons respectively. Various methods were developed for functionalization of nanostructures to modify their surfaces. Different techniques for the effective biofunctionalization of one-dimensional (1D) ZnO nanostructures were illustrated in this chapter. Various biomolecules like human serum albumin, bovine serum albumin, angiotensin II and DNA molecules were effectively immobilized by modifying the surface of 1D ZnO nanostructures. Molecular functionalization of ZnO nanobelts demonstrated which improved the optoelectronic and electrical properties. ZnO nanostructures were also studied for advanced biological applications like fluorescence detection, cellular biocompatibility, biosafety, biosensor, and mammalian cell adhesion.
Original language | British English |
---|---|
Title of host publication | Recent Developments in Bio-Nanocomposites for Biomedical Applications |
Publisher | Nova Science Publishers, Inc. |
Pages | 73-89 |
Number of pages | 17 |
ISBN (Print) | 9781617610080 |
State | Published - Apr 2010 |