Bending modes metrology beyond 12m

R. Gotti, M. Lamperti, D. Gatti, M. K. Shakfa, E. Cane, F. Tamassia, P. Schunemann, P. Laporta, A. Farooq, M. Marangoni

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Bending vibrational modes are responsible for a relevant fraction of molecular absorption spectra in the mid-infrared region at wavelengths beyond 12m. To date, the potential of this region for molecular fingerprinting, high-resolution spectroscopy and frequency metrology has been severely hampered by the lack of widely tunable single-mode lasers, with salt-diode lasers almost disappeared, nonlinear laser sources barely delivering optical powers in excess of few hundreds nanowatt [1] and commercial quantum-cascade-lasers (QCLs) hardly emitting beyond 12m in cw mode [2]. Recently, direct frequency comb spectroscopy has conquered such region and showed impressive capabilities to acquire ultrabroad high-resolution spectra till 16.7m [3]. Nevertheless, spectroscopic data of high metrological quality have not been reported yet, neither spectra with high quality factor in terms of signal-to-noise ratio per spectral point and number of spectral points per spectral feature.

Original languageBritish English
Title of host publication2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665418768
DOIs
StatePublished - Jun 2021
Event2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 - Munich, Germany
Duration: 21 Jun 202125 Jun 2021

Publication series

Name2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021

Conference

Conference2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021
Country/TerritoryGermany
CityMunich
Period21/06/2125/06/21

Fingerprint

Dive into the research topics of 'Bending modes metrology beyond 12m'. Together they form a unique fingerprint.

Cite this