@inproceedings{b9ee0f0b62a54a66ab9187687a146a19,
title = "Avionics sensor fusion for small size unmanned aircraft Sense-and-Avoid",
abstract = "Cooperative and non-cooperative Sense-and-Avoid (SAA) systems are key enablers for Unmanned Aircraft (UA) to routinely access non-segregated airspace. In this paper some state-of-the-art cooperative and non-cooperative sensor and system technologies are investigated for small size UA applications, and the associated multisensor data fusion techniques are discussed. Non-cooperative sensors including both passive and active Forward Looking Sensors (FLS) and cooperative systems including Traffic Collision Avoidance System (TCAS), Automatic Dependent Surveillance - Broadcast (ADS-B) system and/or Mode C transponders are part of the proposed SAA architecture. After introducing the SAA system processes, the key mathematical models for data fusion are presented. The Interacting Multiple Model (IMM) algorithm is used to estimate the state vector of the intruders and this is propagated to predict the future trajectories using a probabilistic model. Adopting these mathematical models, conflict detection and resolution strategies for both cooperative and un-cooperative intruders are identified. Additionally, a detailed error analysis is performed to determine the overall uncertainty volume in the airspace surrounding the intruder tracks. This is accomplished by considering both the navigation and the tracking errors affecting the measurements and translating them to unified range and bearing uncertainty descriptors, which apply both to cooperative and non-cooperative scenarios. Detailed simulation case studies are carried out to evaluate the performance of the proposed SAA approach on a representative host platform (AEROSONDE UA) and various intruder platforms, including large transport aircraft and other UA. Results show that the required safe separation distance is always maintained when the SAA process is performed from ranges in excess of 500 metres.",
keywords = "collision avoidance, conflict detection and resolution, cooperative systems, non-coopertive sensors, sense-and-avoid, sensor fusion",
author = "Subramanian Ramasamy and Roberto Sabatini and Alessandro Gardi",
year = "2014",
doi = "10.1109/MetroAeroSpace.2014.6865933",
language = "British English",
isbn = "9781479920693",
series = "2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings",
publisher = "IEEE Computer Society",
pages = "271--276",
booktitle = "2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings",
address = "United States",
note = "2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 ; Conference date: 29-05-2014 Through 30-05-2014",
}