Avionics sensor fusion for small size unmanned aircraft Sense-and-Avoid

Subramanian Ramasamy, Roberto Sabatini, Alessandro Gardi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

47 Scopus citations

Abstract

Cooperative and non-cooperative Sense-and-Avoid (SAA) systems are key enablers for Unmanned Aircraft (UA) to routinely access non-segregated airspace. In this paper some state-of-the-art cooperative and non-cooperative sensor and system technologies are investigated for small size UA applications, and the associated multisensor data fusion techniques are discussed. Non-cooperative sensors including both passive and active Forward Looking Sensors (FLS) and cooperative systems including Traffic Collision Avoidance System (TCAS), Automatic Dependent Surveillance - Broadcast (ADS-B) system and/or Mode C transponders are part of the proposed SAA architecture. After introducing the SAA system processes, the key mathematical models for data fusion are presented. The Interacting Multiple Model (IMM) algorithm is used to estimate the state vector of the intruders and this is propagated to predict the future trajectories using a probabilistic model. Adopting these mathematical models, conflict detection and resolution strategies for both cooperative and un-cooperative intruders are identified. Additionally, a detailed error analysis is performed to determine the overall uncertainty volume in the airspace surrounding the intruder tracks. This is accomplished by considering both the navigation and the tracking errors affecting the measurements and translating them to unified range and bearing uncertainty descriptors, which apply both to cooperative and non-cooperative scenarios. Detailed simulation case studies are carried out to evaluate the performance of the proposed SAA approach on a representative host platform (AEROSONDE UA) and various intruder platforms, including large transport aircraft and other UA. Results show that the required safe separation distance is always maintained when the SAA process is performed from ranges in excess of 500 metres.

Original languageBritish English
Title of host publication2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings
PublisherIEEE Computer Society
Pages271-276
Number of pages6
ISBN (Print)9781479920693
DOIs
StatePublished - 2014
Event2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Benevento, Italy
Duration: 29 May 201430 May 2014

Publication series

Name2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings

Conference

Conference2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014
Country/TerritoryItaly
CityBenevento
Period29/05/1430/05/14

Keywords

  • collision avoidance
  • conflict detection and resolution
  • cooperative systems
  • non-coopertive sensors
  • sense-and-avoid
  • sensor fusion

Fingerprint

Dive into the research topics of 'Avionics sensor fusion for small size unmanned aircraft Sense-and-Avoid'. Together they form a unique fingerprint.

Cite this