Autonomous Optical Sensing for Space-Based Space Surveillance

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Space debris population has increased dramatically in the past decades posing a threat to the future of space operations. Traditionally, Resident Space Objects (RSO) are tracked and catalogued using ground-based observations. However, Space Based Space Surveillance (SBSS) is a promising technology to complement the ground-based observations as it offers greater performance in terms of detectability, accuracy and weather independency. A Distributed Satellite System (DSS) architecture is proposed for a SBSS mission equipped with dual-use star trackers and inter-satellite communication links to interact and cooperate with each other to accomplish optimized RSO tracking tasks while assumed to simultaneously perform earth observation tasks. This paper focuses on stereovision-based tracking algorithms with higher detectability and tracking accuracy in SBSS tasks in order to identify an optimal tracking solution for Space Domain Awareness (SDA), which could support future Space Traffic Management (STM) operations. Navigation and tracking uncertainties are analyzed in representative conditions to support the optimal selection and processing of individual observations and to determine the actual confidence region around the detected objects. Additionally, Particle Swarm Optimization (PSO) is implemented on-board the satellites to grant the DSS autonomous trajectory planning and Collision Avoidance (CA) manoeuvring capabilities.

Original languageBritish English
Title of host publication2023 IEEE Aerospace Conference, AERO 2023
PublisherIEEE Computer Society
ISBN (Electronic)9781665490320
DOIs
StatePublished - 2023
Event2023 IEEE Aerospace Conference, AERO 2023 - Big Sky, United States
Duration: 4 Mar 202311 Mar 2023

Publication series

NameIEEE Aerospace Conference Proceedings
Volume2023-March
ISSN (Print)1095-323X

Conference

Conference2023 IEEE Aerospace Conference, AERO 2023
Country/TerritoryUnited States
CityBig Sky
Period4/03/2311/03/23

Fingerprint

Dive into the research topics of 'Autonomous Optical Sensing for Space-Based Space Surveillance'. Together they form a unique fingerprint.

Cite this