AppsPred: Predicting context-aware smartphone apps using random forest learning

Iqbal H. Sarker, Khaled Salah

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Due to the popularity of context-awareness in the Internet of Things (IoT) and the recent advanced features in the most popular IoT device, i.e., smartphone, modeling and predicting personalized usage behavior based on relevant contexts can be highly useful in assisting them to carry out daily routines and activities. Usage patterns of different categories smartphone apps such as social networking, communication, entertainment, or daily life services related apps usually vary greatly between individuals. People use these apps differently in different contexts, such as temporal context, spatial context, individual mood and preference, work status, Internet connectivity like Wifi status, or device related status like phone profile, battery level etc. Thus, we consider individuals’ apps usage as a multi-class context-aware problem for personalized modeling and prediction. Random forest learning is one of the most popular machine learning techniques to build a multi-class prediction model. Therefore, in this paper, we present an effective context-aware smartphone apps prediction model, and name it “AppsPred” using random forest machine learning technique that takes into account optimal number of trees based on such multi-dimensional contexts to build the resultant forest. The effectiveness of this model is examined by conducting experiments on smartphone apps usage datasets collected from individual users. The experimental results show that our AppsPred significantly outperforms other popular machine learning classification approaches like ZeroR, Naive Bayes, Decision Tree, Support Vector Machines, Logistic Regression while predicting smartphone apps in various context-aware test cases.

Original languageBritish English
Article number100106
JournalInternet of Things (Netherlands)
StatePublished - Dec 2019


  • Apps usage modeling
  • Context-aware computing
  • Intelligent services
  • IoT analytics
  • Machine learning
  • Mobile data mining
  • Personalization
  • Predictive analytics
  • Smartphones


Dive into the research topics of 'AppsPred: Predicting context-aware smartphone apps using random forest learning'. Together they form a unique fingerprint.

Cite this