Abstract
In this paper we further investigate some applications of Nambu mechanics in hydrodynamical systems. Using the Euler equations for a rotating rigid body Névir and Blender [J. Phys. A 26 (1993), L1189–L1193] had demonstrated the connection between Nambu mechanics and noncanonical Hamiltonian mechanics. Nambu mechanics is extended to incompressible ideal hydrodynamical fields using energy and helicity in three dimensional (enstrophy in two dimensional). In this paper we discuss the Lax representation of systems of Névir-Blender type. We also formulate the three dimensional Euler equations of incompressible fluid in terms of Nambu-Poisson geometry. We discuss their Lax representation. We also briefly discuss the Lax representation of ideal incompressible magnetohydrodynamics equations.
Original language | British English |
---|---|
Pages (from-to) | 223-232 |
Number of pages | 10 |
Journal | Journal of Nonlinear Mathematical Physics |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - 2004 |