TY - JOUR
T1 - Anisotropic and multiband pairing
T2 - From borides to multicomponent superconductivity
AU - Annett, James
AU - Kusmartsev, Feodor
AU - Bianconi, Antonio
PY - 2009/1/1
Y1 - 2009/1/1
N2 - In 2001, the discovery of superconductivity in MgB2 rapidly led to the understanding that its complex multi-sheeted Fermi surface had two distinct values of the gap parameter Δ, each with its own characteristic temperature dependence. While the theory of multigap superconductivity had been developed long ago, this was the first well studied example where multigap behaviour was observed clearly, and indeed is essential to understand the full superconducting properties of the material. Following this discovery, evidence for multigap behaviour has appeared in a number of materials, including cuprates, ruthenates, and most recently the iron pnictides. As well as multigap pairing on different Fermi-surface sheets, strong gap anisotropy in k-space and strong modulations of the gap in real space (e.g. stripes and phase separation models) are also important in cuprates. The aim of this special section is to present a selection of high-quality papers from experts in these diverse systems, showing the links and common physical issues arising from the existence of multi-component Cooper pairing. The papers collected together for the special section provide a snapshot of the current state of the understanding of multi-component superconductivity in a wide range of materials. In a model motivated by MgB2, Tanaka and Eschrig describe Abrikosov vortex lattice in a two-gap superconductor, examining how the vortex structure is modified by three-dimensionality or quasi two-dimensionality of the Fermi surface. The multi-sheeted Fermi surfaces of the nickel borocarbides are probed using angle-resolved positron annihilation spectroscopy, described by Dugdale et al, leading to a full three-dimensional picture of the complex Fermi surface in this superconducting material. Possible evidence for multigap superconductivity in the iron pnictides, obtained using Andreev point contact spectroscopy, is described by Samuely et al. The iron pnictides are also the subject of the article by Caivano et al, in which it is proposed that the Feschbach resonance mechanism operating near to a quantum critical point may lead to stripe-like fluctuations in these materials. A number of papers describe multigap-related effects in high-Tc superconductors. In particular, Atkinson shows how the existence of CuO chain states at the Fermi surface leads to a set of resonances in the induced gap in the chain layer, which have a pronounced effect on the vortex core shape. Kristoffel et al discuss the existence of the two coherence lengths in two-gap superconductors, and describe how this leads to spatially periodic fluctuations, with possible application to high-temperature superconductivity. Kugel et al describe a scenario for phase separation due to long-range Coulomb forces leading to microstrain and nanoscale inhomogeneities in high-Tc cuprates. Kusmartsev and Saarela also argue that charge over-screening may lead to 'Coulomb bubbles' in high-Tc superconductors. Finally, Wysokiski et al describe multigap effects in strontium ruthenate, in particular the effects on the NMR relaxation rate spectra, which are obtained for NMR on different nuclear species.
AB - In 2001, the discovery of superconductivity in MgB2 rapidly led to the understanding that its complex multi-sheeted Fermi surface had two distinct values of the gap parameter Δ, each with its own characteristic temperature dependence. While the theory of multigap superconductivity had been developed long ago, this was the first well studied example where multigap behaviour was observed clearly, and indeed is essential to understand the full superconducting properties of the material. Following this discovery, evidence for multigap behaviour has appeared in a number of materials, including cuprates, ruthenates, and most recently the iron pnictides. As well as multigap pairing on different Fermi-surface sheets, strong gap anisotropy in k-space and strong modulations of the gap in real space (e.g. stripes and phase separation models) are also important in cuprates. The aim of this special section is to present a selection of high-quality papers from experts in these diverse systems, showing the links and common physical issues arising from the existence of multi-component Cooper pairing. The papers collected together for the special section provide a snapshot of the current state of the understanding of multi-component superconductivity in a wide range of materials. In a model motivated by MgB2, Tanaka and Eschrig describe Abrikosov vortex lattice in a two-gap superconductor, examining how the vortex structure is modified by three-dimensionality or quasi two-dimensionality of the Fermi surface. The multi-sheeted Fermi surfaces of the nickel borocarbides are probed using angle-resolved positron annihilation spectroscopy, described by Dugdale et al, leading to a full three-dimensional picture of the complex Fermi surface in this superconducting material. Possible evidence for multigap superconductivity in the iron pnictides, obtained using Andreev point contact spectroscopy, is described by Samuely et al. The iron pnictides are also the subject of the article by Caivano et al, in which it is proposed that the Feschbach resonance mechanism operating near to a quantum critical point may lead to stripe-like fluctuations in these materials. A number of papers describe multigap-related effects in high-Tc superconductors. In particular, Atkinson shows how the existence of CuO chain states at the Fermi surface leads to a set of resonances in the induced gap in the chain layer, which have a pronounced effect on the vortex core shape. Kristoffel et al discuss the existence of the two coherence lengths in two-gap superconductors, and describe how this leads to spatially periodic fluctuations, with possible application to high-temperature superconductivity. Kugel et al describe a scenario for phase separation due to long-range Coulomb forces leading to microstrain and nanoscale inhomogeneities in high-Tc cuprates. Kusmartsev and Saarela also argue that charge over-screening may lead to 'Coulomb bubbles' in high-Tc superconductors. Finally, Wysokiski et al describe multigap effects in strontium ruthenate, in particular the effects on the NMR relaxation rate spectra, which are obtained for NMR on different nuclear species.
UR - http://www.scopus.com/inward/record.url?scp=58149512390&partnerID=8YFLogxK
U2 - 10.1088/0953-2048/22/1/010301
DO - 10.1088/0953-2048/22/1/010301
M3 - Editorial
AN - SCOPUS:58149512390
SN - 0953-2048
VL - 22
JO - Superconductor Science and Technology
JF - Superconductor Science and Technology
IS - 1
M1 - 010301
ER -