TY - GEN
T1 - Analytical treatment for bistable nonlinearly coupled Oscillators
AU - Al-Shudeifat, Mohammad A.
AU - Saeed, Adnan S.
N1 - Publisher Copyright:
© Copyright 2017 ASME.
PY - 2017
Y1 - 2017
N2 - Here, we introduce an analytical approximation to the exact solution of a bistable nonlinearly coupled oscillators (NLC-LOs) to study the internal resonance at the nonlinear normal modes (NNMs). The considered system is composed of two symmetrical linear oscillators coupled by a bistable nonlinear coupling restoring force. The coupling restoring force includes negative and nonnegative linear and nonlinear stiffness components. The introduced approximate analytical solution for the considered bistable NLC-LOs system is mainly proposed for the cases of which the exact frequency and the exact solution are neither available nor valid. The proposed solution depends on the application of the local equivalent linear stiffness method (LELSM) to linearize the nonlinear coupling force according to the non-linear frequency content in the original system. Accordingly, the bistable nonlinear coupling force in the NLC-LOs is replaced by an equivalent periodic forcing function of which the frequency is equal to that of the original NLC-LOs system. Therefore, the original NLC-LOs system is decoupled into two forced single degree-of-freedom subsystems where the analytical solution can be directly obtained. This obtained analytical solution is found to be highly accurate approximation for the exact solution, especially at internal resonances that occur on some NNMs of the system.
AB - Here, we introduce an analytical approximation to the exact solution of a bistable nonlinearly coupled oscillators (NLC-LOs) to study the internal resonance at the nonlinear normal modes (NNMs). The considered system is composed of two symmetrical linear oscillators coupled by a bistable nonlinear coupling restoring force. The coupling restoring force includes negative and nonnegative linear and nonlinear stiffness components. The introduced approximate analytical solution for the considered bistable NLC-LOs system is mainly proposed for the cases of which the exact frequency and the exact solution are neither available nor valid. The proposed solution depends on the application of the local equivalent linear stiffness method (LELSM) to linearize the nonlinear coupling force according to the non-linear frequency content in the original system. Accordingly, the bistable nonlinear coupling force in the NLC-LOs is replaced by an equivalent periodic forcing function of which the frequency is equal to that of the original NLC-LOs system. Therefore, the original NLC-LOs system is decoupled into two forced single degree-of-freedom subsystems where the analytical solution can be directly obtained. This obtained analytical solution is found to be highly accurate approximation for the exact solution, especially at internal resonances that occur on some NNMs of the system.
UR - http://www.scopus.com/inward/record.url?scp=85034777946&partnerID=8YFLogxK
U2 - 10.1115/DETC2017-67762
DO - 10.1115/DETC2017-67762
M3 - Conference contribution
AN - SCOPUS:85034777946
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
T2 - ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
Y2 - 6 August 2017 through 9 August 2017
ER -