TY - GEN
T1 - Analytical model for a superelastic SMA beam
AU - Viet, N. V.
AU - Zaki, Wael
AU - Umer, Rehan
N1 - Funding Information:
The authors would like to acknowledge the financial support of Khalifa University through KUIRF research grant no. 210114.
Publisher Copyright:
© 2017 ASME.
PY - 2017
Y1 - 2017
N2 - We propose an analytical model for a superelastic shape memory alloy (SMA) beam. The model considers reversible phase transformation between austenite and a single martensite variant driven by mechanical loading/unloading. In particular, we consider a cantilever beam subjected to a concentrated transverse force acting at the tip. The force is gradually increased from zero to a maximum value sufficient to cause complete transformation of the initially austenitic phase into martensite away from the beam core. The force is then gradually removed, resulting in complete strain recovery. In each stage of the loading/unloading process, an analytical relation is established between bending moment and curvature in terms of position along the axis of the beam. The model is compared to a uniaxial numerical beam model and to finite element analysis (FEA) results for the same beam in 3D, with very good agreement in each case. The moment-curvature relation is then integrated to obtain a nonlinear expression for the deflection and stress distribution in terms of position along the length of the beam. The expression is validated against 3D simulation results.
AB - We propose an analytical model for a superelastic shape memory alloy (SMA) beam. The model considers reversible phase transformation between austenite and a single martensite variant driven by mechanical loading/unloading. In particular, we consider a cantilever beam subjected to a concentrated transverse force acting at the tip. The force is gradually increased from zero to a maximum value sufficient to cause complete transformation of the initially austenitic phase into martensite away from the beam core. The force is then gradually removed, resulting in complete strain recovery. In each stage of the loading/unloading process, an analytical relation is established between bending moment and curvature in terms of position along the axis of the beam. The model is compared to a uniaxial numerical beam model and to finite element analysis (FEA) results for the same beam in 3D, with very good agreement in each case. The moment-curvature relation is then integrated to obtain a nonlinear expression for the deflection and stress distribution in terms of position along the length of the beam. The expression is validated against 3D simulation results.
UR - http://www.scopus.com/inward/record.url?scp=85035755078&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2017-3763
DO - 10.1115/SMASIS2017-3763
M3 - Conference contribution
AN - SCOPUS:85035755078
T3 - ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
BT - Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
T2 - ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Y2 - 18 September 2017 through 20 September 2017
ER -