Analytical model for a superelastic SMA beam

N. V. Viet, Wael Zaki, Rehan Umer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

We propose an analytical model for a superelastic shape memory alloy (SMA) beam. The model considers reversible phase transformation between austenite and a single martensite variant driven by mechanical loading/unloading. In particular, we consider a cantilever beam subjected to a concentrated transverse force acting at the tip. The force is gradually increased from zero to a maximum value sufficient to cause complete transformation of the initially austenitic phase into martensite away from the beam core. The force is then gradually removed, resulting in complete strain recovery. In each stage of the loading/unloading process, an analytical relation is established between bending moment and curvature in terms of position along the axis of the beam. The model is compared to a uniaxial numerical beam model and to finite element analysis (FEA) results for the same beam in 3D, with very good agreement in each case. The moment-curvature relation is then integrated to obtain a nonlinear expression for the deflection and stress distribution in terms of position along the length of the beam. The expression is validated against 3D simulation results.

Original languageBritish English
Title of host publicationModeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation; Structural Health Monitoring
ISBN (Electronic)9780791858264
DOIs
StatePublished - 2017
EventASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017 - Snowbird, United States
Duration: 18 Sep 201720 Sep 2017

Publication series

NameASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Volume2

Conference

ConferenceASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Country/TerritoryUnited States
CitySnowbird
Period18/09/1720/09/17

Fingerprint

Dive into the research topics of 'Analytical model for a superelastic SMA beam'. Together they form a unique fingerprint.

Cite this