Analysis of supercritical co2 cycle using zigzag channel pre-cooler: A design optimization study based on deep neural network

Muhammed Saeed, Abdallah S. Berrouk, Munendra Pal Singh, Khaled Alawadhi, Muhammad Salman Siddiqui

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The role of a pre-cooler is critical to the sCO2-BC as it not only acts as a sink but also controls the conditions at the main compressor’s inlet that are vital to the cycle’s overall performance. Despite their prime importance, studies on the pre-cooler’s design are hard to find in the literature. This is partly due to the unavailability of data around the complex thermohydraulic characteristics linked with their operation close to the critical point. Henceforth, the current work deals with designing and optimizing pre-cooler by utilizing machine learning (ML), an in-house recuperator and pre-cooler design, an analysis code (RPDAC), and a cycle design point code (CDPC). Initially, data computed using 3D Reynolds averaged Navier-Stokes (RANS) equation is used to train the machine learning (ML) model based on the deep neural network (DNN) to predict Nusselt number (Nu) and friction factor (f). The trained ML model is then used in the pre-cooler design and optimization code (RPDAC) to generate various designs of the pre-cooler. Later, RPDAC was linked with the cycle design point code (CDPC) to understand the impact of various designs of the pre-cooler on the cycle’s performance. Finally, a multi-objective genetic algorithm was used to optimize the pre-cooler geometry in the environment of the power cycle. Results suggest that the trained ML model can approximate 99% of the data with 90% certainty in the pre-cooler’s operating regime. Cycle simulation results suggest that the cycle’s performance calculation can be misleading without considering the pre-cooler’s pumping power. Moreover, the optimization study indicates that the compressor’s inlet temperature ranging from 307.5 to 308.5 and pre-cooler channel’s Reynolds number ranging from 28,000 to 30,000 would be a good compromise between the cycle’s efficiency and the pre-cooler’s size.

Original languageBritish English
Article number6227
JournalEnergies
Volume14
Issue number19
DOIs
StatePublished - 1 Oct 2021

Keywords

  • Deep learning neural network
  • Machine learning
  • Multiobjective genetic algorithm
  • Optimization
  • PCHEs 2
  • Pre-cooler design 1
  • SCO-BC

Fingerprint

Dive into the research topics of 'Analysis of supercritical co2 cycle using zigzag channel pre-cooler: A design optimization study based on deep neural network'. Together they form a unique fingerprint.

Cite this